当前位置:首页 > 模拟 > 模拟
[导读]经由过程LC 滤波电路对芯片的供电系统进行滤波是完善同步输出开关噪声的主要手段,文章针对该课题提出了一种完善SSO 的LC 电源滤波电路算法与设计。首先提出了L 型LC 滤波电路的等效模子,介绍了其具体工作事理,并经

经由过程LC 滤波电路对芯片的供电系统进行滤波是完善同步输出开关噪声的主要手段,文章针对该课题提出了一种完善SSO 的LC 电源滤波电路算法与设计。首先提出了L 型LC 滤波电路的等效模子,介绍了其具体工作事理,并经由过程理论推导给出了内部参数的定量计较公式;然后按照L 型滤波电路的缺陷,引入了π型LC 滤波电路等效模子,并介绍了其工作事理和响应的参数取值;接着给出了LC 滤波电路的LAYOUT 设计的要求。最后是关于该设计电路的总结。

  1 引 言

  同步开关噪声(SSN)是由IO 输出缓冲同时开关产生的,也被称作同步开关输出噪声(SSO)。产生SSO 的一个主要原因是电源分配系统(PDS)存在阻抗。今朝常用的体例是在紧靠芯片的电源输入端加足够的退耦电容,可以起到稳压的浸染,可是因为电源平面和芯片电源平面没有有用的隔离,电源平面上存在的噪声干扰很轻易进入到芯片的供电平面上,最终传导到SSO 上,使得SSO 恶化。本文提出了L 型和π 型LC 滤波电路设计方案,可以有用隔离两个平面之间的中高频噪声干扰,完善SSO 问题。

  2 π 型LC 电源滤波电路

  2.1 π 型LC 电源滤波电路模型及工作原理

  由于电源系统提供的前端输入电源V 实际中是一个变化的值,里面有很多纹波成分,当0 0 <ωn < 2ω 时,LC 电路对纹波有放大作用,所以产生了L 型LC 滤波电路的改进型—π 型LC 电源滤波电路(见图一)。具体就是在电感前端增加滤波电容,形成π 型。这样输入电源首先要经过一级初级滤波,然后再进入LC 滤波电路,这样可以有效地完善LC 滤波电路的滤波效果。

  

 

  图一 π 型LC 电源滤波电路

  3.2 π 型LC 滤波电路算法分析

  C2 要选择一个合适的值,选择过大会增加成本,过小会影响滤波效果,实践中取C2=C1,其构成类似于二阶巴特沃斯滤波器,巴特沃斯滤波器特点是通带内频率响应曲线最平坦,阻带内则逐渐下降为0,这样可以起到更好的滤波效果。

  3 L 型LC 电源滤波电路

  3.1 L 型LC 电源滤波电路模型及工作原理

  L 型LC 滤波电路的等效模型见图二。整个等效模型的元件有电感L 和退耦电容C1。电感L 主要作用是扼制电流的跳变,起到稳流的作用。退耦电容C1 的主要用于抑制由于SSO引起的电压的跳变,起到稳压的作用。SSO 可以等效成一个瞬时开关的电流源,为了表征最坏的情况,即所有的IO 在同一瞬间一起打开,此时的电流需求就等于芯片在该电压下的最大工作电流I。

  

 

  图二 L 型LC 电源滤波电路

  该电路的工作原理就是当SSO 同时开启后,产生电流I 的瞬时需求,首先由C1 放电维持电压缓慢变化,同时通过电感L 对电容进行充电。通过这样反复的充放电过程维持芯片输入端电压在芯片正常工作电压的误差范围之内。从频谱角度看,LC 构成了一个低通滤波器,有效隔离了两个平面之间的中高频噪声。

   3.2 L 型LC 电源滤波电路的算法分析

 

  根据图一的等效模型可以得到方程组(I):

  

 

  方程组(I)化简后得到二阶微分方程(II)

  

 

  解微分方程(II)得到特解:

  

 

  如果电压V 为常量,将特解(III)带入二阶微分方程(II)解得:

  

 

  如果输入电压V 含有纹波Vn sin(ωnt) ,则求解得:

  

 

  从(V)可以看到经过LC 滤波电路后,纹波被放大,放大系数为

。取

放大系数为

 

  当

时,LC 电路对电源纹波有抑止作用。

 

  当

时,LC 电路对纹波有放大作用。其中当

时,LC 电路对纹波有明显放大效应。为了避免电源的纹波出现在危险区域,一般要求ω 》ωn 0 ,工程中取ω 5ωn 0 = 。此时在ωn的点,LC 电路对纹波的放大倍数为25 / 24 =1.042,放大部分不超过5%。另外根据芯片的要求,u2 的压降不能大于百分比p%,得到不等式(VI):

 

  

 

  

 

  化简得到不等式(VII)

  

 

  将ω 5ωn 0 = 和不等式(VII)联列得到方程组(VIII):

  

 

  求解等到不等式组(IX):

  

 

  由于实际中不存在理想电容,实际电容具有不同的滤波频段,退耦电容常采用多种容值电容的组合,C1 就是退耦电容值的总和。L 是电感值的总和。

  4 LC 滤波电路的LAYOUT 设计

  LAYOUT 是LC 滤波电路的重要组成部分,合理的LAYOUT 可以最大限度地体现设计效果,反之则会带来额外的干扰。

  4.1 π 型LC 滤波电路LAYOUT 设计

  

 

  图三 π 型LC 电源滤波电路的LAYOUT 效果图

  整个电路分为三个网络平面:电源、芯片电源和地平面。我们为了保证电源连通能有明显的效果,同时还要避免在连通的网络上引起额外的压降,所有网络使用敷铜相连接。以π 型LC 滤波电路为例,整个电路LAYOUT 的效果见图三。我们首先通过过孔从电源平面上引入供电电流,然而供电电流经过前级滤波电容滤波后进入电感,经过电感来扼流后输出电流,输出电流经过后级退耦电容滤波后通过过孔输送到芯片电源平面。在电源平面换层的时候需要多加过孔,减小由于过孔所引起的感抗。另外获取在电源的区域和获取地的区域相邻,从而来增加电平的精确性。

  4.2 L 型LC 滤波电路LAYOUT 设计

  L 型LC 滤波电路LAYOUT 设计和π 型类似,只是少了前级的滤波电容,电源是通过过孔直接进入电感进行扼流。

  结语

  文章中利用LC 滤波电路来完善SSO 的算法与设计中,经实人们的具体践发现LC 滤波器对于中高频干扰有着明显的抑制作用,这样可以有效的完善SSO 问题。但是其缺点在于增加了器件,带来成本。还有一点就是对于电流I 特别大的电路不适用,原因是相对应的电感值很小,生产上难实现。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭