当前位置:首页 > 模拟 > 模拟
[导读]光电开关实现的中心议题: 光电开关的发光电路 带自动增益控制的光电开关接收电路 光电开关属于无接触测量传感器,其检测距离范围比较宽,在计数、测距和行程控制等许多测控系统中得到广泛应用。但是,光电传

光电开关实现的中心议题:

  • 光电开关的发光电路
  • 带自动增益控制的光电开关接收电路


光电开关属于无接触测量传感器,其检测距离范围比较宽,在计数、测距和行程控制等许多测控系统中得到广泛应用。但是,光电传感器的输出信号与发光管的强度有关,与发光管和接收管的距离有关,与外来干扰光也有关。因此使用每一个光电开关时,必须首先调整接收电路的灵敏度,才能保证光电开关工作于最佳状态。

本文介绍了一种高可靠性的光电开关电路,带有稳频调制光以抗各种干扰,具有大功率驱动电路和光电三极管的自动增益控制特性,检测电路的输出级带有放大和施密特迟滞特性,确保整机的高抗干扰能力。

本电路由发光电路和光电接收电路两部分组成。它具有抗外光干扰、灵敏度可以不用人工调整,工作稳定可靠等优点,在反射式或对射式光电开关中均可应用。

1  发光电路

图1 给出了一个具有大功率输出的发光二极管驱动电路,它具有发射15kHz 调制光的能力。


图1  发光二极管的大功率驱动器

第一级4001 为单脉冲发生器,可以人工按键输出检测脉冲,用于故障维修。

为了稳定被调制光信号的频率,电路中使用了分频器CD4060 。它带有一个外接晶体振荡器,内部有多级分频器。对于1M 晶振来说,经过4 060 的六次分频,可以得到频率稳定的151625kHz 的方波,再通过功率场效应管的电流放大,就可以同时驱动上百个发光二极管同时发光。

2  带自动增益控制的光电开关接收电路

图2 给出了光电三极管的检测电路。红外光电三极管T2 带有基极引出脚。因此可以对其进行灵敏度控制。它射极输出的光电流被放大管T3 反相之后,反馈到光电三极管的基极。由于反馈回路中有由R13和C11组成的低通滤波器,因此这个反馈是对于直流工作点的负反馈,也使得交流电压增益得到控制,这就是自动增益控制(AGC) 电路。


图2  光电接收电路

输入光信号较强时, T3 集电极信号有变强趋势,导致光电三极管T2 基极的直流工作点电压下降,从而使T2 和T3 的交流输出均减小。因此,这个负反馈系统将使T3 的交流输出信号在很大范围内与T2 得到的光强大小几乎无关。可知,该接收电路在输入光发生变化时,T3 输出信号变化不大。就是说,光源和光电三极管之间的距离变化,在很大范围内对T3 输出信号影响不大。只有光源被充分隔挡之后,T3 的输出信号才有明显变化。
图2 中的U11 组成二阶带通滤波器, 可以滤去151625kHz 以外的信号。该级增益为1 , Q 值为5 ,截止频率、中心频率以及滤波特性容易调整。二极管D1 和电容C14组成检波电路,可以从151625kHz 信号上解调出包络信号。上述两部分电路可以滤除阳光、日光灯、白炽灯等干扰源的作用。

图2 中的输出电路由放大级U12和施密特电路U13组成。U13的迟滞作用可以消除光电开关的临界抖动现象,避免光电开关的误翻现象。最后,光电开关的输出状态由发光二极管D2显示。


3  实验数据

表1 为实验测得的数据。发光管和接收管之间正面相对, 两者之间无聚焦光学元件。用有无遮光对整机主要参数进行测试。由表可知,两管表面之间的相对距离在015~170mm范围内,无需调整灵敏度都能正常工作。


表1  光电开关整机实验数据

在距离接收管100mm 处用1 个40W白炽灯照射时,接收管仍可正常工作,表现为接收管不会饱和,抗干扰性极强。倘要加大工作距离,应加入光学透镜;在2m以上光射距离时,可用半导体激光二极管作调制光源。

4  结束语

本文所介绍的高级光电开关电路具有如下特点:

  • 由于负反馈使接收光电三极管不容易饱和。只要该管不饱和,外来光干扰就能抑制。
  • 由于使用了调制和解调电路,所以在各种磁、电、光干扰之下,都能可靠工作。
  • 施密特电路可以对开关进行消抖。
  • 由于电路尽量采用集成电路,特别是大功率FET 的应用,使本文所介绍的电路更适于阵列式光电开关应用的场合。
  • 由于采用了AGC 电路,导致了接收灵敏度几乎无需调整。

本文所介绍的电路,在100 条微小产品的自动生产线上进行联合精确计数,取得良好效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭