当前位置:首页 > 模拟 > 模拟
[导读]喀嗒声指恼人的音频瞬态噪声,在耳机放大器打开或关闭时由耳机产生。通过去掉传统耳机放大器输出端的隔直电容,美信公司的DirectDrive专利技术可去除喀嗒声,同时提供更好的低频响应。本文先阐述DirectDrive原理,如

喀嗒声指恼人的音频瞬态噪声,在耳机放大器打开或关闭时由耳机产生。通过去掉传统耳机放大器输出端的隔直电容,美信公司的DirectDrive专利技术可去除喀嗒声,同时提供更好的低频响应。本文先阐述DirectDrive原理,如何工作以及带来的优点。然后介绍一个在手机等便携设备上已验证的去除耳机喀嗒声的方法。


便携音频产品的差异化一直是个热门话题。什么特点能让产品A相比竞争产品B更出色?通常的音频指标(频响平坦度、总谐波失真加噪声值等)都如此相似以至于难分胜负。用户界面当然是有明显差异,但这往往带有太多的主观性。我们希望有一个客观的音频指标,它可以帮助产品脱颖而出。


耳机打开或关闭时的喀嗒声就是一个重要且客观的音频指标。随着人们对音频性能的期望越来越高,去瞬态噪声处理已逐渐成为便携音频产品的一个关键卖点。


传统耳机放大器


在便携音频系统中,电源管理对延长电池使用时间很重要,所以很多功能模块在不使用时经常被关闭。这种设计思路使得音频喀嗒声更容易出现。理想器件在打开或者关闭时没有音频输出,但实际音频放大器总是会或多或少的产生喀嗒声。


大部分由电池供电的传统耳机放大器都是单电源供电,它们工作在正电压和地之间。这些放大器只能通过正信号,而放大器输入的音频信号则有正有负。所以,放大器必须加入直流偏置才能接受音频信号。为了获得最大的信号摆幅,直流偏置点一般都设定为供电电压的一半(图1)。

 


图1. DirectDrive放大器的输出波形和传统耳机放大器的输出波形对比


虽然放大器需要直流偏置,但耳机却只接受交流信号。将直流偏置加到耳机上,耳机动圈会从中间位置移至最边界。这意味着耳机输出的声压将出现失真。同时,消耗在耳机线圈的直流信号造成了能量损失和不必要的热。在极端情况下,这些热可能会永久性损坏耳机。


传统音频系统包括隔直电容,它可以阻止直流偏置进入耳机。该电容和阻性负载组成了高通滤波器。因为传统耳机的等效阻抗为32Ω,隔直电容必须足够大才不会阻止音频通过:

 


为了让低至20Hz的音频通过,我们要使用至少250uF的电容。如果耳机阻抗为16Ω,那么我们将需要至少500uF的隔直电容。


某些系统可能有足够空间来使用相对便宜的铝电解电容,但大部分便携设备无法做到。因而,我们必须使用昂贵的钽电容,即使这样钽电容仍然需要相当的板上空间。我们也可以使用较小容值的电容来节约空间和成本,但无法保证低至20Hz的平坦频响曲线(图2)。

 


图2. 16Ω耳机放大器的频响曲线


“无偏置”技术介绍


包括美信在内的一些公司开发了不需要直流偏置的耳机放大器(该电路在美信的专利为DirectDrive,本文称为无偏置)。虽然无偏置耳机放大器由单电源供电,它仍然能通过正、负信号。负摆幅由板载电荷泵产生的负电源实现,该负电源可以跟踪相应正电源的幅度。这样,放大器就成为了零偏置(图1)。


无偏置设计中的电荷泵只需要两个很小的外部陶瓷电容:一个飞跨电容和一个保持电容。一般,它们的容值为1uF,体积为0402(0.4×0.2mm)。因而,相比包含220uF大电容的传统耳机放大器电路,无偏置设计在提供卓越性能的同时还节省了空间。

走近“喀嗒声”


现在,我们从电气角度来分析喀嗒声。在传统耳机放大器中,输出电容在放大器打开时会充电,在关闭时会放电。因为电容的电荷将流过耳机,所以充、放电过程将产生恼人的喀嗒声。图3为喀嗒声的等效电路,Vcc/2电源代表耳机放大器输出端的直流偏置。

 


图3. 喀嗒声的等效电路,C1代表隔直电容,R1代表耳机负载


S1和S2不能同时打开或者关闭,它们用来模拟耳机放大器的打开和关闭:

(a) S1断开,S2闭合:


(b) S1闭合,S2断开: 

         

(c) S1再次断开,S2再次闭合: 

              

 

图4

图4中的黄色波形描述了喀嗒声。 图4. 喀嗒声的理论波形。 已验证方案


2008年全球生产了超过4亿支手机,很多用户都抱怨手机的音频质量。为什么?因为设计师只有两种选择:


要么使用大的隔直电容来获得较好的低频响应,但用户得忍受打开或关闭耳机时产生的喀嗒声。要么通过使用较小的隔直电容来减小喀嗒声,但用户无法欣赏200Hz以下的低音。音频工程师努力通过软启动或者电容充、放电方法来解决这个难题,但效果始终不理想。


我们为什么不尝试下全新的方案呢?


新一代立体声耳机放大器MAX9724包含专利电路,它可通过单电源来产生零偏置音频输出。由于不需要大的隔直电容,此方案可节省成本、空间和器件高度。下面,我们通过一个简单的测试来比较QSC60xx的喀嗒声和使用DirectDrive电路后的效果(图5)。QSC60xx是CDMA手机的主流基带芯片,像很多其它基带或音频编解码芯片一样,它集成了耳机输出功能。

图5

图5. 测试对比了两种处理喀嗒声的效果。左声道是QSC60xx的原始设计,右声道是美信MAX9724耳机放大器。音频测试信号为1kHz正弦波。


当你插入耳机,QSC60xx在没有音频输入的情况下首先打开耳机放大器(图6的黄色波形的上升沿),然后在40-50ms后给耳机放大器输入1kHz正弦波(图6的黄色波形的正弦波部分)。

图6

图6. 耳机放大器第一次打开时对比试验波形。紫色波形表示了图5的耳机放大器打开时产生的喀嗒声


当QSC60xx打开耳机放大器时,图6的紫色脉冲就是恼人的喀嗒声。如果MAX9724在喀嗒声之前就已经打开,那么它将放大这些喀嗒声(即使MAX9724自身不产生喀嗒声)。为了解决这个问题,我们在QSC60xx打开耳机放大器之后的20-30ms再打开MAX9724。结果,这样就可以获得完全没有喀嗒声的开机波形(图6的绿色波形)。


这里,需要注意两点:


1. 当我们打开MAX9724时,它自身不产生喀嗒声(详见图6的红色和绿色波形)

2. 必须在喀嗒声过后再打开MAX9724。不然,无偏置放大器会把喀嗒声做信号放大。这就是一些设计即使使用了MAX9724,仍然听到放大了的喀嗒声的原因。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

台北2024年5月21日 /美通社/ -- 提供针对AMD WRX90和TRX50主板优化的DDR5 OC R-DIMM 提供容量128GB(16GBx8)到768GB(96GBx8),速度5600MHz到8...

关键字: AMD 内存 BSP GB

上海2024年5月20日 /美通社/ -- 2024年5月16日,世界知名的生命科学公司 Eppendorf 集团于第二十三届生物制品年会上成功举办了"疫路超越 推流出新"的产品发布会,正式推出大规模...

关键字: RF PEN BSP IMAC

北京2024年5月20日 /美通社/ -- 过去五年里,支付和收款方式日新月异,其发展和变化比过去五十年都要迅猛。从嵌入式数字商务的出现,到"一拍即付"的...

关键字: VI BSP PAY COM

华钦科技集团(纳斯达克代码: CLPS ,以下简称"华钦科技"或"集团")近日宣布致敬 IBM 大型机 60 载辉煌历程,并将继续实施集团大型机人才培养计划。

关键字: IBM BSP 研发中心 PS

助力科研与检测新突破 上海2024年5月15日 /美通社/ -- 全球知名的科学仪器和服务提供商珀金埃尔默公司今日在上海举办了主题为"创新不止,探索无界"的新品发布会,集中展示了其在分析仪器领域的最...

关键字: 质谱仪 BSP DSC 气相色谱

上海2024年5月16日 /美通社/ -- 2024年5月10日至5月13日,富士胶片(中国)投资有限公司携旗下影像产品创新力作亮相北京P&E 2024。在数码相机展览区域,全新制定的集团使命"为世界绽...

关键字: 富士 数码相机 影像 BSP

贝克曼库尔特目前已成为MeMed Key免疫分析平台和MeMed BV检测技术的授权经销商 在原有合作的基础上,继续开发适用于贝克曼库尔特免疫分析仪的MeMed BV检测 加州布瑞亚和以色列海法2024年5月16日...

关键字: BSP IO 检测技术 免疫分析仪

英国英泰力能的燃料电池是可产业化的产品解决方案 英国首个专为乘用车市场开发的燃料电池系统 在 157kW 功率下,此燃料电池比乘用车的其他发动机更为强大 &...

关键字: ENERGY INTELLIGENT 氢燃料电池 BSP

深爱人才,共赴"芯"程 深圳2024年5月15日 /美通社/ -- 5月11日,深圳国资国企"博士人才荟"半导体与集成电路产业专场活动在深圳市重投天科半导体有限公司(简...

关键字: 半导体 集成电路产业 BSP 人工智能

武汉2024年5月15日 /美通社/ -- 北京时间4月26日-5月4日,2024 VEX 机器人世界锦标赛于美国得克萨斯州达拉斯市举办。本届 VEX 世锦赛为期九天,设有 VIQRC 小学组/初中组、V5RC 初中组/...

关键字: 机器人 BSP RC POWERED
关闭
关闭