当前位置:首页 > 模拟 > 模拟
[导读]USB简介USB(UniversalSerialBus)即通用串行总线,用于把键盘、鼠标、打印机、扫描仪、数码相机、MP3、U盘等外围设备连接到计算机,它使计算机与周边设备的接口标准化,从2000年以后,支持USB2.0版本的计算机和设备已

USB简介

USB(UniversalSerialBus)即通用串行总线,用于把键盘、鼠标、打印机、扫描仪、数码相机、MP3、U盘等外围设备连接到计算机,它使计算机与周边设备的接口标准化,从2000年以后,支持USB2.0版本的计算机和设备已被广泛使用,USB2.0包括了三种速率:高速480Mbps、全速12Mbps、低速1.5Mbps。目前除了键盘和鼠标为低速设备外,大多数设备都是速率达480M的高速设备。

尽管USB2.0的速度已经相当快,对于目前高清视频和动辄GByte的数据传输还是有些慢,在2008年11月,HP、Intel、微软、NEC、ST-NXP、TI联合起来正式发布了USB3.0的V1.0规范。USB3.0又称为SuperSpeedUSB,比特率高达5Gbps,相比目前USB2.0的480Mbps的速率,提高了10倍以上,引用Intel专家JeffRavencraft的话:“以25GB的文件传输为例,USB2.0需要13.9分钟,而3.0只需70秒左右。”25GB,正好是单面单层蓝光光盘的容量。USB3.0预计将在2010年逐渐在计算机和消费电子产品上使用。

力科于2009年4月发布了USB3.0的物理层测试解决方案,能提供端到端的互操作测试和兼容性测试,包括了Transmitter测试、Receiver测试、TDR测试。此外,力科还提供了业界领先的USB3.0协议层测试方案。

USB3.0的Transmitter测试

对于USB3.0的Transmitter测试,为了测量到5次谐波,需要带宽12.5GHz以上的示波器,力科的SDA813Zi带宽13GHz,采样率40GSamples/s(最高可达80GS/s),配合USB3.0一致性测试软件QualiPHY、眼图医生软件和测试夹具,可以快速完成USB3.0的发送端Compliance测试和调试分析。

QualiPHY软件可以使USB3.0发送端的各项测试自动化,并生成多种格式的测试报告。在QualiPHY的USB3.0测试软件中,包括差分电压摆幅测试、去加重比值测试(De-emphasisratiotest)、眼图和抖动测试、扩频时钟测试(SpreadSpectrumTest),图1所示为报告中的整体测试项目概览,列出了测试项目对应的Spec的条目,测试项目的名称,当前测试结果,测试判定条件等。

在发送端测试中,通常需要消除USB3.0的测试夹具引入的损耗和反射。如下图1所示为USB3.0发送端测试示意图:夹具插到待测试芯片的USB口,夹具上通过PCB的传输线USB口引出到4个SMA连接头(USB3的TX和RX各两个),然后用SMA接口的同轴电缆连接到示波器。由于夹具上的连接器、过孔、传输线等会使信号发生衰减、色散或者反射,导致示波器测量到的信号有所恶化。力科的眼图医生软件包括了夹具去嵌功能,只需输入夹具的S参数模型文件(可由VNA或者TDR测量得到),即可计算出没有夹具时测量到的信号的波形与眼图。

如图2左下部分所示为示波器测量的USB3.0信号去嵌后测量到的眼图,图1右下部分是示波器直接测量到的眼图(即未作夹具去嵌的眼图),相比后者,前者的上升下降沿更陡峭,眼轮廓清晰,眼张得更开。从这个比较图中可以看到力科的去嵌技术可以消除测试夹具的负面作用。使用夹具去嵌功能后,可以更加准确的测量电压摆幅和去加重的比值。


图1:力科一致性测试软件QualiPHY产生的报告一部分

差分电压摆幅测试

差分电压摆幅测试的目的是验证信号峰峰值是否在0.8-1.2V之间。测试中DeviceUnderTest(简称DUT)需要发送出测试码型CP8(CP是CompliancePattern的简写,在USB3的物理层测试中,各项测试需要不同的测试码型,USB3.0规范中定义了各种测试码流,USB3.0的芯片厂商提供了软件接口来配置其发送数据的码型),CP8由50-250个连续的1和50-250个连续的0重复交替组成,而且消除了去加重,其波形相当于50-250分频的时钟。在这些测试中,把USB3.0测试夹具去嵌后测量结果更精确。

去加重比值测试

为了把5Gbps速率的数据传送较远的距离,USB3.0的发送端使用了去加重技术,这项测试可以测量DUT的去加重程度是否满足规范要求(要求在-3dB到-4dB之间)。测试时DUT发送出CP7码流,CP7码型由50-250个连续的1和50-250个连续的0重复交替组成,而且是添加了去加重的信号波形。图3为某USB3.0芯片的去加重测量结果,该芯片采用了-3.47dB的去加重。


图3:某USB3.0芯片的去加重比值测量

眼图与抖动测试

在USB3.0的TX的眼图和抖动测试中,测量的是待测试信号经过参考测试信道后TP1点的眼图和抖动。如下图4中的Referencetestchannel即为参考测试信道,在规范中定义了longchannel、shortchannel和3米电缆三种参考测试信道。如果使用longchannel或者较长电缆,信号到达接收端时衰减比较大,眼图已经闭合,USB3.0芯片接收端使用了CTLE均衡器对信号进行均衡后(CTLE均衡器介绍见本文最后一部分),信号眼图的质量将大大改善,所以要求测试仪器分析出CTLE均衡器处理后信号的眼图和抖动。


图4:USB3.0的TX的眼图测试点(来自USB3.0规范)

如下图5所示,左边的眼图是靠近TX近端测量到的眼图;中间的眼图是通过兼容性信道(参考测试信道)后测量的眼图,可见眼图的张开程度较小,抖动较大;右边的眼图是仿真CTLE均衡后的眼图,可见眼高和抖动都得到改善。


图5:USB3.0的Transmitter测试在近端、远端和均衡后的眼图对比

眼图和抖动测试中信号源需要发出特别的测试码型,对于眼图测试,需要CP0码型(扰码的D0.0),对于抖动测试,需要CP0码流或者CP1码流(D10.2),前者用于确定性抖动Dj的测量,后者用于随机抖动Rj的测量。眼高必须从连续的1百万个比特叠加的眼图中测量,力科SDA813Zi示波器完成1百万比特的眼图仅需2秒,速度是同类示波器的10-50倍以上。抖动为10e-12误码率时抖动的峰峰值(即总体抖动Tj)。

扩频时钟测试(SpreadSpectrumClockTest)

扩频时钟经常使用在计算机主板的电路上,用于减小电磁辐射。在USB3.0中,需要测试扩频时钟的调制频率和频偏,测试时DUT发送出CP1码型的数据流(CP1码型为D10.2,即0101连续跳变的码型,相当于频率2.5GHz的时钟),规范要求扩频时钟的调制频率为30-33KHz之间,频偏在0ppm到-5000ppm之间。如下图6为力科示波器测量扩频时钟的结果。

USB3.0使用的CTLE均衡器

ContinuousTimeLinearEqualization均衡器(简称CTLE)即连续时间线性均衡器,是一种常见的线性均衡器,在USB3.0芯片的接收端中使用了CTLE均衡器。USB3.0的速度高达5Gbps,当USB电缆较长时,RX端眼图很可能已闭合,这时分析眼图与抖动是没有意义的。使用力科眼图医生的CTLE均衡仿真后,对均衡后信号测量眼图与抖动指标,可以精确的验证其性能。结合力科的信道仿真功能,直接测量USB3.0的TX,可以迅速评估不同的信道是否需要均衡或者均衡后信号的性能指标如何。

USB的官方组织规定了USB3.0使用的CTLE均衡器的参数,如下图7左上部分为均衡器的频响,右上方的表格是均衡器的参数,下方是力科示波器中集成了USB3.0的均衡器参数,可方便调用。

结语:本文简要介绍了力科测试USB3.0的发送端的解决方案。力科的眼图医生软件可以快速验证经过USB3.0电缆后远端的信号质量,以及CTLE均衡器均衡后的眼图和抖动,帮助USB3.0开发人员快速测试和验证USB3.0芯片和电路设计。力科第四代示波器SDA813Zi强大的眼图和抖动分析能力,可以快速的调试和分析USB3.0设计中的碰到的各种问题。

参考文献

1,UniversalSerialBus3.0Specification,Revision1.0

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭