当前位置:首页 > 模拟 > 模拟
[导读]1 引言PWM整流器不仅可以控制AC/DC 变换性能,而且可实现网侧单位功率因数和正弦波电流控制,甚至能使电能双向传输[1],因此被广泛应用于功率因数补偿、高性能整流器、电能回馈、有源滤波等领域。整流器的输入端来自电

1 引言

PWM整流器不仅可以控制AC/DC 变换性能,而且可实现网侧单位功率因数和正弦波电流控制,甚至能使电能双向传输[1],因此被广泛应用于功率因数补偿、高性能整流器、电能回馈、有源滤波等领域。整流器的输入端来自电网的三相电源,其相序a,b,c 在保证相位差120°的前提下只是一个相对量,而整流器算法中三相电源的相序涉及大量的数学变换以及PWM 波的输出,需在输入端定义。这样如果输入端接线错误,就不能实现算法功能。因此在不同的电网环境,必须先用仪器测量相序,再让整流器工作,这样的过程繁琐且容易出错。在此提出一种新的三相电源相序调整方法,有效地解决了上述问题。

2 PWM 整流器的数学模型及控制策略

2.1 PWM 整流器的基本结构

图1 示出三相VSR 主电路结构。可见,该电路由交流侧三相电感、三相全控桥、直流侧滤波电容组成。当VSR 正常工作时,通过PWM 波控制开关管的关断顺序,实现能量的双向传输。

图1 三相桥式电压型PWM 整流器

桥臂上下两个功率开关管的导通是互补的,即上桥臂开关管导通时,对应的下桥臂功率开关管关断,其相应的逻辑开关函数为:

2.2 数学模型及控制策略

设定电网电压为:

式中:uao,ubo,uco分别为交流侧a,b,c 与电源中点o 间的电压;Up为峰值电压。

由式(1)可得出三相静止坐标系下的开关函数数学模型为:

2 式中:ia,ib,ic为交流侧电流;Udc为直流侧的负载电压。

为判别相序,将三相电压转换成线电压。根据Clarke 变换,将a,b,c 坐标系转换为α,β 坐标系:

式中:uab,ucb分别为线电压,且以b 相为参考点;uα,uβ,iα,iβ分别为α,β 坐标系中的电压和电流。

根据Park 变换,将α,β 坐标系转换为两相旋转d,q 坐标系:

式中:ud,uq,id,iq分别为d,q 坐标系中的电压和电流;θ=2πft,f 为电网频率,0≤t≤Tuα,Tuα为uα的周期。

经过以上变换后,在d,q 坐标系中的三相电压型PWM 整流器的数学模型为:

令交流侧电压矢量在d,q 轴上的分量分别为upd=UdcSq,upq=UdcSd.在式(6)中,d,q 轴变量互相耦合,因而不能对其电流进行单独控制。通过id,iq的前馈解耦控制,对ud,uq进行前馈补偿,并且采用电流预测法对电流环进行控制,方程如下:

式中:id* 为电压环PI 的输出值;iq*=0.

将第k+1 次

采样周期时输入电流的采样值,用给定值id*(k+1),iq*(k+1)来代替,计算出符合电流变化的输出电压矢量。在PWM 中运用空间矢量法合成输出电压矢量,使下一次采样时刻的实际电流以最佳特性跟随下一时刻的参考电流。

控制系统的电压外环采用PI 调节器,其输出得到三相参考电流幅值基准i*,i* 就是d,q 旋转坐标系下的电流给定值id*(k+1),iq*(k+1)。只要在开关周期内实现式(7),即可实现电流无差拍控制。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭