当前位置:首页 > 模拟 > 模拟
[导读]本例提出了一个新颖的振荡器结构。它使用一个串联LC(电感-电容)储能电路,使调谐范围大于采用并联LC方式的电路。这种振荡器结构能够获得宽的频率区间,明显超过最好的宽带调谐变容二极管性能。工程师们都认为现有水

本例提出了一个新颖的振荡器结构。它使用一个串联LC(电感-电容)储能电路,使调谐范围大于采用并联LC方式的电路。这种振荡器结构能够获得宽的频率区间,明显超过最好的宽带调谐变容二极管性能。工程师们都认为现有水平的VCO(压控振荡器)能够覆盖一个倍频程。这种结构可实现4:1的输出频率。只用LC储能电路就能设定这个频率,因此其它元件的寄生电容不会限制输出频率。与标准振荡器不同的是,此电路在频率极限处也能良好地工作。

  乍看去,振荡器的中心结构像是构成锁存SCR(硅控整流管)结构的两只晶体管(图1)。该结构类似于一支晶闸管,但增加的衰减电阻使电路保持在线性工作模式。电阻使这只"SCR"的增益小于1,并直流稳定。在谐振频率处,串联调谐的储能电路将增益升高到1以上,使电路振荡。振荡不需要辅助元件,电感与电容之间的结点没有其它连接,这意味着只靠用作电容的变容管就决定了调谐范围。频率的变化是按调谐元件的平方根。频率要改变两倍,调谐电容就要改变四倍。

图1,振荡器的核心是两只晶体管与一个串联LC储能电路。增益控制电阻增加了衰减,因此晶体管工作在线性区间而不是锁存区。

  与并联LC储能电路不同,谐振电流通过的是有源元件,因此受到限制。这个限制转而也意味着调谐元件上出现的交流电压很小,一般不到100mV.小信号减少了电路的非线性效应,以及信号在变容管上自偏效应的影响。变容管上可以使用小至0.3V的控制电压。如果使用一只1μH电感,则电路用4.7pF~4.7μF范围(比率为106:1)的电容值都能起振。

  具体设计时,LC储能电路移至PNP晶体管Q2的射极(图2)。较低速的PNP管产生了较大的相位差,更有利于振荡。L2和C2连接到电源轨的一个公共点,更强调了这部分电路布局的重要性。振荡器通过C2和C4检测调谐的电路,回路中所有东西都会给L2增加不可控的寄生值。这些寄生值会影响AGC(自动增益控制)动作,降低了振荡器的性能和精度。

图2,具体设计时,将LC储能电路移至PNP晶体管。变容二极管D7和D3提供电容,L2是电感。

  Q1与相应的元件实现AGC.并联LC振荡器允许有信号的削波,但对这种串联LC电路,如果信号过大致削波,就会退化成为一个多谐振荡器。AGC伺服动作具有提供一致性输出幅度的额外优点。D5用于建立一个0.6V直流偏压。R11和R12构成一个电压梯度,产生一个接近于肖特基二极管D6正向压降的直流偏压。这个偏压使D6工作为一个更完美的小信号输出整流器。C8对整流后的信号做积分,成为一个与电路输出幅度成正比的直流电压。这个直流信号通过一个由R15与C8构成的滤波器,加在AGC放大器IC1上。运放对送给电路的A-CTRL输入幅度信号做滤波直流信号的伺服控制。这个信号能够将输出幅度设为0V~1V.

  在本例中,输出幅度为0.9V.频率范围从35MHz~140MHz,比率为1:4,这是普通高性能VCO的两倍,需要电容比增加4位。总电容比为1:16,正好与变容二极管自身相等。由于有AGC,在输出区间的最小(图3)和最大(图4)频率上都有很好的正弦波质量。

图3,在35MHz和0.9V输出时,振荡器产生高质量的正弦波。

图4,在142MHz和0.9V时,输出仍然干净且稳定,这要归功于AGC电路

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭