当前位置:首页 > 模拟 > 模拟
[导读]作为电机行业的“新人”, 无刷电机是实至名归的后起之秀,以狂浪之势涌入医疗,工业控制,消费电子和汽车电子等高精度控制行业,“无刷“是不是未来电机行业的发展趋势?本文以案例的形式扒一扒无刷电机那些事!

近年来,无刷电机在医疗,工业控制,消费电子和汽车电子等高精度控制行业广泛应用,无刷电机性能的好坏很大程度上取决于电机驱动器,研发阶段,工程师如何借助示波器快速、便捷、真实的对驱动器信号进行分析?本文主要介绍ZDS4054Plus数椐挖掘型示波器对电机驱动器的典型测试及案例分析。

一、直流无刷电机介绍

随着电力电子的发展和新型永磁材料的出现,无刷直流电机得到了迅速发展,无刷直流电机通过电子器件实现了电机的换相,取代了传统的机械电刷和换相器。其由电动机主体和驱动器组成,是一种典型的机电一体化产品。 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等。无刷电机凭借噪声低、寿命长、转速高、体积小、动态性能好、输出力矩大、设计简便等特点,在医疗、工业控制、消费电子、电动工具、电动车等领域广泛应用。

二、无刷电机的工作原理

首先,看一下无刷电机驱动器的框图,如下:

有上图可知,MCU通过配置寄存器输出六路PWM只是控制信号,其最高电压也只有5V,不能直接驱动电机,而是通过控制功率管的开关来使电机运行,驱动电路一般是由多个MOSFET组成的驱动桥和电机驱动桥功率管构成。无刷电机的换向是换相是依靠转子位置的检测进行的,其中有感驱动方式是利用霍尔传感器检测转子位置的,无感驱动方式是通过检测和计算无刷电机转动过程中的电流、电压等参数变化,推测转子位置,进而进行换相的。

换向原理

无刷电机内部安装有霍尔传感器,其可以根据转子不同位置时的不同磁场方向分布情况,而给出1或0的输出信号,三个传感器均匀安装,在360度的电角度上发生6次翻转电平,每次相差60度电角度,根据三个传感器的信号编码测出转子的位置,这就是常用的有感驱动方式。另外,无感驱动方式是通过检测和计算无刷电机转动过程中的电流、电压等参数变化,推测转子位置,进而进行换相的。

驱动电路工作原理

驱动电路简化图

图中Q1到Q6为功率场效应管,当需要AB相导通时,只需要打开Q1, Q4管,而使其他管保持截止。此时,电流的流经途径为:正极→Q1→线圈A→绕组B→Q4→负极。MCU给Q1的栅极是PWM信号,而给Q4的栅极是常开信号,这样你就可以通过控制Q1输入端的PWM信号占空比来控制驱动电机的有效电压。其他五步换向导通也是这样。实测各相波形如下:

各相电压波形实测效果

三、ZDS4054Plus的实测应用与分析

针对上述无刷电机驱动器的PWM信号分析,ZDS4054Plus示波器又有哪些新的测试体验呢?

512Mpts大数椐存储

针对案例中无刷电机的驱动电压,工程师在观察PWM信号时,若信号中出现异常,则难以通过触发方式触发,需要在大时基下,通过缩放模式分析包络内的信号,(在缩放窗口观察波形细节),PWM信号频率几十K以上,需要保证较高的采样率,同时PWM信号还伴随有电流、编码器等载波信号,需要多个通道分别观察,从波形时间、采样率、多通道三方面看,都需要大存储。图1为无刷电机PWM驱动信号,在存储深度设为350M时,捕获7S的波形,采样率依然高达50M Sa/s,保证了波形不失真。由公式:存储深度=波形时间*采样率可知,ZDS4000系列示波器标配512Mpts存储深度,保证在捕获长时间波形同时保持高采样率。

双ZOOM模式+智能标注

如上图,在捕获较长时间的波形后,如何对PWM驱动信号或异常信号进行分析呢?另外,在工业伺服应用方面,在不同的工况下,在切换不同负载的时候,对应不同时间的驱动器波形变化或出异常信号,整个负载切换到稳定的过程时间较长,也需要在大存储深度下,观看波形细节,针对上述情况,ZDS4000系列示波器在保证大存储深度的情况下,支持双ZOOM缩放模式,可以为两个缩放窗口分别设置系数,配合智能标注功能,对任意处感兴趣的信号进行标注。图中为对PWM驱动信号,主时基内的波形在两个ZOOM窗口分别放大,ZOOM1为PWM周期信号,ZOOM2为PWM某一尖峰的振荡波形,在大存储深度的保证下,采样率50M Sa/s,保证了波形细节的真实性。同时,配合智能标注功能,如在主时基上做一标注,在ZOOM1、ZOOM2上能够快速找到标注点,可看到ZOOM1中标注点——PWM的第3个尖峰,在ZOOM2中可查看到尖峰的振荡情况及幅值。


四、总结

ZDS4000系列数椐挖掘型示波器,凭借512M深存储、双ZOOM模式、模板触发、FIR硬件滤波和智能标定等功能,能够快速、真实定位分析无刷电机驱动器的异常波形,为无刷电机行业的波形调试提供完美解决方案!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭