当前位置:首页 > 汽车电子 > 汽车电子
[导读]目前市场上的抬头显示器(HUD)系统多半显示冗余信息,如一些在车内其他设备也能取得的信息。不同于既有产品,新世代抬头显示器技术HUD2.0则是将抬头显示器定位为专为高级辅助

目前市场上的抬头显示器(HUD)系统多半显示冗余信息,如一些在车内其他设备也能取得的信息。不同于既有产品,新世代抬头显示器技术HUD2.0则是将抬头显示器定位为专为高级辅助驾驶系统(ADAS)设计的显示器,透过加装车内传感器、摄影机与车对车/架构通讯技术(V2X),汽车所能感知的四周环境信息就会倍数激增(表1)。

 

HUD2.0成ADAS一级显示平台

这种技术面临的挑战在于如何有效地将汽车所得知的关键信息传达给驾驶员,而在半自动与全自动驾驶功能逐渐成熟之际,这些信息势必将随之成长。

 

HUD2.0的技术能够实现以自然且直觉的讯息传递方式来扩充驾驶的视野,显示的内容会随车外实境调整(World-fixed),以适形绘图影像 (Conformal Graphics)显示车辆所得知的讯息,而导航指示、车道偏离警告(LDW)与主动式车距维持定速系统(ACC)等指示信息,会在最适合驾驶的自然影像距离显示出来。

借助HUD2.0技术,驾驶视野中的实境能够加以扩充,实时提供有用信息,且影像色彩鲜明,并以自然距离重迭在实体对象之上,如此驾驶就能轻松取得关键信息,并将干扰降至最低。除此之外,有别于现行抬头显示器多半用来显示用户接口中的次级信息,HUD2.0技术可以成为人机接口(HMI)策略的重心,肩负起显示主要信息的功能。因此,优异的影像质量及在不同光线状况下的可阅读性,是新世代HUD技术必须具备的要项。

扩增虚拟图像距离 HUD2.0满足高显示亮度需求

相较于传统抬头显示器的设计,HUD2.0在许多层面上都必须满足新的需求,如图1所示,视野(FOV)与虚拟图像距离(VID)都对驾驶所见虚拟图像的大小扮演关键角色。传统抬头显示器只能覆盖车道的一小部份,HUD2.0则以更大的视野和更长的虚拟图像距离,让驾驶可以看见单一车道以外的影像。要加大视野并拉长虚拟图像距离有几项必要条件--更高的显示亮度、更加饱和的色彩、更高效的电力使用,以及对阳光照射更强的耐受度。

 

图1 FOV与VID影响抬头显示器影像大小

在达成这些新参数要求的同时,HUD2.0还是要满足所有汽车环境既有一贯的需求,表2即是针对HUD2.0与传统抬头显示器部分参数的比较。

 

亮度与能源效率

更大的视野加上更高的亮度能给予驾驶更易于观看的影像。此外,为确保在不同光线状况下信息皆清晰可读,抬头显示器必须能实现亮度介于每平方公尺15,000~30,000烛光的虚拟图像。

然而显示影像时产生的绝对功率仍应维持低水平-除了达到最低数值以利热管理,也必须在光源(LED)的有效运作范围内维持光通量(Luminous Flux),不过要同时达到大视野与高亮度且不致增加耗电,需要效率更高的成像器。

市面上的DLP 0.3吋WVGA Type A100数字微镜装置(DMD)的效率超过66%,可大幅提升系统效率,进而达到上述参数的需求,其采用DLP技术搭配RGB LED光源的抬头显示器系统,可在确保效率提升的前提下,实现必要的亮度及更大的视野。

举例来说,在系统设计上采用0.3吋WVGA数字微镜装置搭配欧司朗(OSRAM)Q8WP RGB LED,只须6.0瓦(W)LED能耗就能达到每平方公尺15,000烛光以上的亮度,且视野可达10度,能耗比市场上现有小型次级抬头显示器系统还低,整套系统的效率为每瓦10.6流明(lm/W)。

色彩饱和度

许多传统TFT/LCD抬头显示器都使用白色LED,并利用滤光片滤出红、绿、蓝三种颜色。相较之下,采用DLP技术的抬头显示器系统则是运用红色、绿色与蓝色的LED,呈现更加饱和的色彩。这种做法能提升抬头显示器上显示影像的可读性。此外也可利用关键效能度量标准来评断系统的色彩效能,包括跟NTSC 色域(Color Gamut)进行比较以测量色域大小,或以其主波长与色彩饱和度来定义每一种颜色的色调(Hue)。

表3比较了TFT/LCD白色LED架构与采用DLP技术搭配RGB LED的抬头显示器架构,结果显示采用RGB LED可大幅提升效能,不仅色域大于NTSC,红蓝两色也更深层饱和。

 

阳光照射下的热负载

当抬头显示器系统的视野加大,显示器光学组件所汇集的太阳热能也随之增加;同时为了让驾驶能够以最合适的角度观看随实境调整的影像,虚拟图像距离因而加大,导致来自阳光的热能更加集中在抬头显示器的内部成像器上。如此一来,系统吸收更多阳光,且热能都集中在面积更小的内部影像上,可能对系统造成伤害。

DLP技术的抬头显示器系统是以漫射(Diffusing)屏幕材质生成抬头显示器系统的内部影像;而传统的抬头显示器系统,则是由成像器(典型的TFT面板)直接发出影像。

漫射屏幕这种被动组件具有两大优势。第一,它不会吸收阳光热能-而是将光线扩散;第二,漫射屏幕本身不会产生热能。这些属性让采用DLP技术的抬头显示器系统更能因应大视野与较长的虚拟图像距离,而这两者都是扩充实境抬头显示器系统的必要条件。

偏光太阳眼镜

抬头显示器呈现的虚拟图像除了必须具备足够的亮度,并且能在各种自然光线状况下清楚显示之外,当驾驶戴上偏光太阳眼镜时也要能够清晰可读。DLP技术因为能发射非偏光(Unpolarized Light),相关制造厂商便可基于该技术优化抬头显示器,使其适用于偏光太阳眼镜。

严苛环境

应用于车用抬头显示器系统的成像技术,必须在严苛的环境条件下也能可靠运转,例如高湿度,气温剧烈变化、极端气温、陡震或振动。数字微镜装置是一种微机电系统,有些人可能会质疑它是否能适应汽车环境下的温度循环、陡震与振动。[!--empirenews.page--]

事实上,新款DLP数字微镜装置即有能力应付这些状况。由于反射镜的振动频率远超过100kHz,即使遭遇陡震或振动(小于5kHz的范围内),机械结构仍能保持稳固。

汽车导入高级辅助驾驶系统已然蔚为潮流,车用抬头显示器也随之成为汽车人机接口策略的重要元素之一,而DLP技术凭借过去近20年在消费及商业市场广为应用所奠定的基础,将有助打造新世代车用抬头显示器。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭