当前位置:首页 > 汽车电子 > 汽车电子
[导读]日前,有消息称来自瑞典的研究人员正在探索研制可用于电动汽车的碳纤维锂电池电极材料,该材料具有非常高的抗拉强度。该碳纤维锂电池电极材料将被用于电动汽车的多功能锂


日前,有消息称来自瑞典的研究人员正在探索研制可用于电动汽车的碳纤维锂电池电极材料,该材料具有非常高的抗拉强度。该碳纤维锂电池电极材料将被用于电动汽车的多功能锂离子结构电池。其中,多功能锂离子结构电池能够将电池储能物质集成到汽车车身中。由于碳纤维材料具有非常高的抗拉强度和极限拉伸强度(ultimate tensile strength,UTS),并且其还具有非常强的锂离子集成能力。因此,碳纤维材料常被用作锂离子电池中的结构电极。

来自瑞典皇家理工学院(KTH)的Mats Johansson表示,以上电动汽车碳纤维锂电池结构电极材料研发项目主要研究目的是为了提升电池的机械特性,实现电池不仅可以存储能量而且还可以被设计集成为结构的一部分等功能。Mats Johansson还举例子道,通过利用以上电动汽车碳纤维锂电池结构电极材料可以将汽车的发动机盖设计为电池的一部分。以上多功能锂离子结构汽车电池目前已经吸引了众多的项目研究,其中包括:

来自英国伦敦帝国学院的研究人员和沃尔沃汽车技术研究人员组成了一支研究团队。该研究团队的研究目的是为了研发一种多功能锂离子结构汽车电池原型,该电池采用的是碳纤维材料和聚合物树脂,这样一来该电池不仅可以存储、释放电能,而且其结构强度高且重量轻,因此又可以用来设计制造集成到汽车零部件中。该研究项目总经费为340万欧元(约合470万美元)。项目研发人员计划利用复合材料替换掉备胎舱中的金属底板。沃尔沃汽车公司目前正在努力研究设计将该备胎舱复合材料应用到原型车中以进行试验研究。

沃尔沃汽车研究小组已经研发出了两种多功能复合材料组件并进行了实验研究,这为以上技术的后续研究打下了基础。其中,已经研发出的两种多功能复合材料组件分别为后备箱盖和充气罩,以上两种新组件均在沃尔沃S80车型中进行了实车实验。

RANGE研究计划

美国高级项目研究所能源所(Advanced Research Projects Agency - Energy,ARPA-E)推出了名为RANGE的研究计划,该计划的目的是为了推动电动汽车储能介质革命性进步。在2013年,美国高级项目研究所能源所分别向四个不同的研究项目授予了总额高达875万美元的项目奖金。以上四个研究项目分别由斯坦福大学(Stanford University)、加州大学圣地亚哥分校(UC San Diego)、亚利桑那州立大学(Arizona State University)和宾州州立大学(Penn State)领导完成。其中,以上四个研究项目的研究目的均为研发多功能结构汽车用电池。

英国伦敦帝国学院研发项目协调人Emile Greenhalgh表示,以上多功能结构电池复合材料不仅可以存储并释放电能,与此同时还可以承载机械载荷。其所具备的特性在2005年被来自美国陆军研究实验室的研究人员正式实验证实。

在2005年的材料研究学会讨论会上,一篇技术文章向人们介绍了多功能发电材料和储能材料的三个应用实例:锂离子结构电池、质子交换膜(proton exchange membrane,PEM)燃料结构电池和结构电容器。文章研究人员表示,以上新型的技术应用都经过了精心的设计,其中采用的应用材料不仅可以存储释放电能,而且还可以承载结构负载。因此才实现了多功能设计目的并大幅降低了整体的重量。

对于此技术瑞典皇家理工学院组成了一支研究小组,该研究小组成员由来自瑞典皇家理工学院的三名教授组成,其中包括化学工程教授Göran Lindbergh、光纤和聚合物技术教授Mats Johansson和航空和车辆工程教授Dan Zenkert。此外,参与该项研究计划的还包括瑞典Swerea SICOMP和吕勒奥技术研究所(Luleå Institute of Technology)。

聚丙烯腈的可逆容量潜力

来自瑞典皇家理工学院的汽车和航空航天工程研究员Eric Jacques(其博士论文研究方向就是关于结构电池方面的)表示,碳纤维材料应用到汽车中主要有两种功能体现,其一就是作为汽车车身的轻质复合型加强材料;另一主要应用就是作为汽车锂离子电池的电极。

Eric Jacques表示:“我们对碳纤维锂电池电极材料研究的主要目的是为了开发一种不仅可以具有轻质材料特性同时又可以承受机械载荷另外又可以储存电能的多功能结构电池。这样一来就可以大幅降低电动汽车的整体重量。”

Eric Jacques和其同事于2013年在电化学学会期刊上发表了一篇关于该碳纤维锂电池电极材料研究的技术论文。论文中介绍道,在锂离子电池锂化率维持在一定值100毫安/克时,市场上出售的好几个档次的聚丙烯腈(polyacrylonitrile,PAN)基碳纤维的可逆电容量在完成十次充放电循环后均能够达到100毫安时/克甚至更高。其中,影响锂离子电池测量电容量的主要因素为锂离子电池的锂化率。经试验发现,降低通过所有实验碳纤维材料十分之一的电流大小可以使电池电容量提升100%。通过以上实验测量研究,Eric Jacques研究团队总结道碳纤维材料在结构电池中不仅可以作为电池阴极材料而且还可以作为电池中的集电极。

 


Eric Jacques

在今年早些时候,Eric Jacques和其同事又在Carbon杂志上发表了一篇文章。文章主要介绍了锂离子电池中锂的含量与电池中聚丙烯腈基碳纤维材料抗拉强度、极限抗拉强度之间的关系。该论文主要研究结论还包括:

锂离子电池在经过几次电化学充放电循环后,电池中碳纤维材料的强度并未出现减弱现象,并且电池的测量电容量也未受到影响。

电池中锂化碳纤维材料的极限抗拉强度会在电池使用过程有所降低,但是其会在电池脱锂过程中部分恢复,并在电池达到最大测量电容量时达到最高。但是,在电池完全充电情况下其极限抗拉强度仍低于其自身强度的40%。

电池中锂化碳纤维材料的极限抗拉强度降低的可逆性与电池碳化率和测量电容量的关系表明,电池在使用过程中碳纤维并不会受到影响,而电池中的锂在碳纤维脱锂过程中可能会发生不可逆反应。然而,电池中锂化碳纤维材料极限抗拉强度的降低与电池测量电容量并不呈线性关系。同时,在电池完全充电情况下,电池中锂化碳纤维材料极限抗拉应变要小于碳纤维材料的纵向膨胀。[!--empirenews.page--]

以上结果表面,电池中锂化碳纤维材料极限抗拉强度的降低可能与电池中缺陷区域的锂化程度有关。其中,电池中缺陷区域的锂化程度将直接关系到电池中碳纤维材料的拉伸破坏模式。

Eric Jacques对此表示:“对于以上技术的研究实验呈现出了非常理想的实验结果,但是在我们推出最终的可应用电池之前我们还有非常多的工作需要去完成。”

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭