当前位置:首页 > 汽车电子 > 汽车电子
[导读]近日,特斯拉的100kWh车型已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。按照欧盟规定,在欧盟成员

近日,特斯拉的100kWh车型已经通过了欧盟认证机构RDW的评估。这意味,Model S/X 100D车型即将问世!其续航里程理论值将达到613km(基于NEDC标准)。

按照欧盟规定,在欧盟成员国上市销售的车型,都必须经过其授权机构的认证方可。RDW是特斯拉委托的一家荷兰的公司,经其认证后即可获得在欧盟销售的许可。我们来探究下,这个100kWh是如何做到的?

 


Elon Musk曾经说过,特斯拉的续航(电量)要以每年5%的速度增加。从当前电池组的迭代情况来看,这个目标基本实现。除作为入门级配置的60kWh外,70kWh、85kWh均已分别升级为75kWh和90kWh。

不久之后,100kWh和120kWh的电池组也将进入选配清单。目前,60kWh仍然作为一个乞丐版配置存在,以促进特斯拉的销量。真正有故事的,是70kWh和85kWh,是如何各增加5kWh电量的。

有一点可以肯定,那就是电池组电量增加过程中,其电池组的结构是没有改变的。内部电池包(Battery Module)的数量也并未发生改变。我们先来简单了解下特斯拉电池组的内部构造。

60kWh内部有14个电池包,每个电池包内含384个电芯,共计有5376个电芯组成;85kWh由16各电池包组成,每个电池包内含444个电芯,共计7102个电芯组成。

后来加入的70kWh,实际上是一个75kWh电池组,经过软件限制而来的。多余的5kWh,最初被当做一个价值3000美元的选装包提供给车主。只要通过OTA软件更新,70D就可以变为75D。

那么问题来了,75kWh电池组是怎么来的?关于这个问题,特斯拉官方并没有做出技术解释。根据作者的判断,75kWh其实是85kWh电池组,减少2 个电池包而来的。在85kWh电池中,每个电池包的容量是5.3kWh,14个这样的电池包就是74.2kWh。

这就是70kWh、75kWh,以及85kWh之间的关系。至于60kWh,这只是一个为了降低准入门槛而设置的配置而已。那么,90kWh又是怎么来的呢?

从85kWh到90kWh,多了5kWh。是多加了一个电池包吗?在85kWh的电池组结构中,已经无法再叠加电池包。唯一的可能性就是更换了新的电芯。当然,其采用的依然是18650型号的电芯,只不过化学材料有所调整,增加了能量密度。

在这道工序中,特斯拉将电芯的石墨阳极中,添加了少量的硅,从而提升了电芯的能量密度。

在阳极中加入硅,已是电池领域公认的可以提升能量密度的办法。为避免不断叠加电池包,而造成的电池组质量过大,特斯拉接下来只能把重点放在研发高能量密度的电芯上。然而,对于三元锂离子电池来说,要想通过硅来增加能量密度,远没有那么简单。

其基本原理是:在石墨阳极中加入硅后,由于硅原子的结构相比石墨能够容纳更多的锂离子,导致阳极对锂离子的吸纳能力增强。单次充放电循环中,阳极锂离子越多,能量密度也就越大。

然而,硅在充分吸纳锂离子后,其体积会膨胀300%,比石墨吸纳锂离子后的膨胀率7%要大很多。这种反复的体积变化,会造成固态电极变得“松软”,容易崩离。以此,电池的循环寿命就会降低。

另外一层因素,是硅阳极由于充放电时的膨胀/伸缩特性,会破坏锂电池电解质SEI膜的形成。这个膜是在锂电池初次循环时所形成的,对于阳极材料有保护作用,可以防止材料结构崩塌。

基于上述原因,采用硅材料做阳极,虽然能量密度可以显著提升,但也伴随着副作用,最终会导致电池寿命缩短。所以,特斯拉采取的方案是,逐步在石墨阳极中添加少量的硅,在能量密度和循环寿命中寻找平衡点。

众所周知,特斯拉采用的18650电池是由松下生产的。随着双方合作加深,特斯拉也在研发新的圆柱形电池。在Model 3正式投产后,新型21700电池将取代18650,成为新的电芯。

21700电池依然是三元锂电池,阴极材料是镍钴铝酸锂(NCA)。这种圆柱形三元电池,是目前能量密度最高的动力电池解决方案。相比方块形电池,此类电池虽然能量密度高,但稳定性较差,需要有较为出色的BMS(电池管理系统)支持。

特斯拉最早的Roadster采用的是松下的NCR18650A型电池,额定电压3.6V,容量3.1Ah。之前的85kWh电池组采用的是NCR18650B型电池,额定电压3.6V,容量3.1Ah。

90kWh的电池型号不得而知,但应该不是直接由松下提供成品,而是特斯拉与松下共同研发,专供特斯拉车型的定制化电芯。目前,松下生产的18650电池中,NCR18650G型是容量最高的型号,达到了3.6Ah。如果按照这个计算的话,85kWh电池组中的7102颗电芯,替换为G型电池,正好是 90kWh。

所以,有一种可能性就是90kWh电池组中,电芯是NCR18650G型;而85kWh电池组中,电芯是NCR18650B型。总之,在电芯数量不变(电池组结构不变)的情况下,只有把单个电芯的容量提升至3.6Ah,才能确保90kWh的电量。

而要实现100kWh,有2个方案:一是再叠加2个电池包,按照每个电池包5.3kWh的容量,正好可以得到100kWh;二是替换能量密度更高的电芯。作者认为,后者是最佳,也是最有可能的一个方案。

因为90kWh是基于85kWh的电池组结构而来的。这个结构在18650电池规格下,已经定型,更改其设计结构的成本是很高的。事实上,电池组中已经没有空间再叠加更多的电池包了。

如果增加电池包,不但电池组质量会增加,电池组的冷却循环系统都要改动。所以,提升电芯容量,才是最经济可行的方案。

试想,在100kWh的电池组中,不改动电池组结构的情况下,单个电芯的容量要提升至3.9Ah,才有可能实现100kWh的容量。所以,作者猜想特斯拉已经与松下研发出了3.9Ah的18650电芯。这一功劳只能归功于阳极中的硅。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭