当前位置:首页 > 消费电子 > 消费电子
[导读]摘要:本文将主要阐述在电视中应用阵列式麦克风,可以大大提升用户的体验感受;而且提出了一些解决回声的技术方案。  关键词:聊天电视;阵列式麦克风;回声;体验感;校准  前言  随着国家三网融合政策地推进并落实

摘要:本文将主要阐述在电视中应用阵列式麦克风,可以大大提升用户的体验感受;而且提出了一些解决回声的技术方案。

  关键词:聊天电视;阵列式麦克风;回声;体验感;校准

  前言

  随着国家三网融合政策地推进并落实,电视机作为家庭的娱乐终端,也将带来一些非常积极的变化。例如,像深圳创维在2010年2月就率先研发成功了“聊天电视”,随后海信、TCL等家电厂家也推出相似的产品。

  在聊天电视中,麦克风的语音收集就变得非常重要。目前多数聊天电视基本上都是使用了单个麦克风进行收音,可能是有线麦克风,也可能是无线麦克风。采用单个麦克风收音,会带来以下一些问题。

  ● 用户体验不好。

  即用户在视频聊天的过程中,需要手握着,或者尽量靠近麦克风来说话,感觉不好;特别是很多家庭成员要一起聊天时,更显得拥挤不堪。

  使用有线麦克风,连接线显得很啰嗦,而且影响家庭的装饰;无线麦克风在人移动速度稍快时,都容易出现断音;而且无论采取哪种方式,用了一段时间后,都需要更换电池或者再次充电。

  ● 成本较高。

  目前在聊天电视上,采用无线麦克风,载波调制为2.4GHz的方式,已经成为主流,但是这种方式的成本明显偏高。

  针对上述两个问题,我们提出使用阵列式麦克风应用在电视上,可以较好解决这两个问题。

  阵列式麦克风

  阵列式麦克风(Array Microphone),又名麦克风阵列(Microphone Array),即设置两组以上麦克风,并以这些麦克风对音讯进行侦测,所得到的资料交由数字信号处理器(DSP)进行比对,用以还原声音的原貌,并消除背景杂音。阵列式麦克风目前是HD Audio的标准之一。Windows Vista已可以支持阵列式麦克风。

  阵列式麦克风通过对拾取的多路语音信号进行分析与处理,使阵列形成的波束方向图主瓣对准目标语音,“零点”指向干扰源以抑制干扰信号,从而尽可能地获取目标语音。其中波束方向及波束主瓣宽度与麦克风的间距、麦克风数目、麦克风的摆放位置、声源入射角及采样频率紧密相关。波束的形成不仅消除了使用单个麦克风时需人工调节麦克风指向性问题,而且可以使输出语音的信噪比大幅度提高,从而无需人工干预亦可获得高质量的语音。

  使用传统麦克风说话时,人需要尽量靠近麦克风,对于系统来说,靠近麦克风说话的就是“主音”,系统获得较大的输入。而对于旁边的杂音,或者对话者从扬声器输出的声音相对“主音”来说,幅度都是比较小的,都属于“干扰音”。这样系统可以更准确过滤掉“干扰音”,保留“主音”。在这种传统的麦克风拾音过程中,回声的问题并不突出。而在应用阵列式麦克风时,回声问题则需要重点关注。

  回声是指在扬声器播出的声音在被受话方听到的同时,语音信号也通过多种途径被麦克风拾取,重新回输至原说话人处。回声通过的路径各不相同,也就产生了不同的延时回声,包括直接回声和间接回声。直接回声是指扬声器播出的声音未经任何的反射直接进入麦克风,这种回声的延时最短,它同远端说话者的语音能量,扬声器和麦克风间的距离、角度、扬声器的播放音量,麦克风的拾音灵敏度直接相关。而间接回声是指扬声器播出的声音经过不同的路径(如房屋或房屋内任何的物品)一次或多次反射后进入麦克风后所产生回声的集合。房屋内任何物品的移动或改变都会改变回声通道。因此这种回声的特点是多路径和时变的。

  在阵列式麦克风应用中,由于人在说话时,不再需要紧贴麦克风,相对而言,人的“主音”对麦克风的影响力可能会降低,即旁边的“干扰音”有可能会干扰“主音”,导致系统无法正确识别哪个才是真正的“主音”。特别是在聊天过程中,对方的声音从扬声器出来,如果声音比较大,会被麦克风重新获取,被对方再一次或者多次听到他本人说过的话。这就是在应用阵列式麦克风所要面对的最大的难题。

  简而言之,在应用阵列式麦克风过程中,建议关注以下几个问题:收音范围是否足够宽;收音距离是否足够远;收音的效果是否足够清晰;回声的问题是否得以较好的消除。其中收音范围可以通过更换麦克风的个数以及麦克风的摆放位置来调整;而收音的距离和清晰度等可以通过调整麦克风的灵敏度来配合,本文不作过多的论述。由于对于回声的问题最难处理,本文也试图提出一些个人的想法。


  阵列式麦克风在电视上的应用

  目前,阵列式麦克风的技术发展已经较为成熟,在人的语音收音距离要求不是很远,而且空间不大,收音范围较窄的情况下,阵列式麦克风已经被大量应用,如笔记本电脑、车载蓝牙设备等等。同样,阵列式麦克风也可以应用在电视机上,使得用户可以无拘无束地与远方的家人、朋友等进行聊天交流(图1)。

  当阵列式麦克风在电视机上应用时,需要更加远的收音距离,需要更加宽的收音范围,而这些问题都可以比较容易解决,但是回声的问题则变得更为突出。因为电视机是家庭的娱乐中心,所以电视机的扬声器音量输出也许会比较大,而麦克风大部分都是设计在电视机上,远端说话的声音从扬声器出来,很容易被麦克风重新拾取,再传送到原说话者的那边,严重一些的情况,还可能形成自激。

  在电视聊天过程中,如果存在回声,会导致说话的人感觉不舒服;而且语音叠加,导致语音不清晰,所以要尽量消除回声。电视机的使用场合、环境各不相同,比如说扬声器的音量大小差异很大,空间的布置差异也很大等,这些都是与回声直接相关的因素,而且这些因素都为不可控,不可预估的因素。为了解决在电视机上应用阵列式麦克风,可能会产生的回声问题,需要在系统内部设计自适应滤波器。自适应滤波器的基本思想是估计回音路径的特征参数,产生一个模拟的回音路径,得出模拟的回音信号。然后接收信号中减去这个自适应滤波器模拟出来的回音信号,实现回音抵消。

  自适应滤波器的架构如图2。图中所示的滤波器的输入是x(n)={x(n),x(x-1),⋯x(n-N+1)}T,滤波器的权系数是h(n)={h1(n),h2(n),⋯hN (n)}T,d(n)为期望输出信号,d^(n)为滤波器的实际输出,也称估计值。e(n)为误差,e(n)=d(n)-d^(n)。由误差经过自适应算法,来调整滤波系数,使得滤波实际输出接近期望输出的信号。

  在实际的电视中的应用原理框图见图3。图中f(n)代表来自远方的语音信号;r1(n)为f(n)从扬声器出来,经过不同的回声通道所产生的回声集合,并被阵列式麦克风收音;s(n)为本地用户说话的语音信号;r(n)为自适应滤波器对f(n)进行了预处理,估算f(n)信号所产生的回音,其动态估算值为r(n)。那么通过计算,本地用户所传送出去的声音信号应该为u(n)=y(n)-r(n)=s(n)+r1(n)-r(n)。在理想的状态下,如果自适应滤波器所产生的回声估算值r(n)等于实际的回声集合r1(n),即r1(n)-r(n)=0,那么回声将被刚好完全消除。

  由于用户的使用环境差异非常大,单独靠自适应滤波器内部的算法,动态修改滤波器的权系数,很难使得输出的r(n)=r1(n)。所以如果自适应滤波器在DSP内部动态修正权系数的同时,把电视机使用的环境因素考虑进去,充分分析回声的通道的各种情况,结合“内外”的因素,来动态修正滤波器的权系数,这样将会使得r(n)更加接近于实际的r1(n),从而更地的消除回声。带有内部校准信号的系统框图如图4。

  其中最主要是增加了一个内部校准单元,内部存储有一些特定的音频测试信号Fn。人声所包括的频率主要从300~3400Hz之间,所以内部的测试信号Fn从这个频率区间进行取样即可,如Fn=300Hz、400Hz、500Hz等等,以此类推。其逻辑思路见图5。

  举例说明:当用户发现在聊天过程中回声较大,可以人为通过遥控器的按键或者键控板上的按键等方式来发出校准指令。此时,内部校准单元会逐一发出相关的测试信号Fn,测试信号通过主信道,通过功放,从扬声器发出声音,声音再通过不同的回声通道,被阵列式麦克风拾取,回送到内部校准单元。由于测试信号为固有的信号,内部校准单元可以准确对比测试信号和回声之间的差异,考虑与环境相关的回声因素,产生新校正因子γ。

  校正因子γ送到自适应滤波器,让自适应滤波器修正滤波器的权系数,这个权系数可以说在一定程度上考虑了外部的环境对回声的影响因素,所以自适应滤波器所产生的r(n)将更加接近r1(n),从而可以更好的消除回声。

  小结

  可以预见,聊天功能将会成为未来电视机的主要功能之一,而在电视机中应用阵列式麦克风,可以摆脱对传统形式麦克风的依赖,给用户带来较好的体验感受;而加强对回声的消除处理,是阵列式麦克风得以在电视机上广泛应用的保证。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

所有关于高分辨率音乐传输和无损音频或空间音频格式的讨论都为时过早。很少有人能分辨出其中的区别——除非他们通过高分辨率、固态扬声器聆听。

关键字: 扬声器 半导体

扬声器作为音响系统的核心组件,其接线方式的正确性对于音质和系统的稳定运行至关重要。本文将详细介绍扬声器的接线方法,包括单声道、双声道以及多声道扬声器的接线方式,同时还将探讨扬声器接线过程中的注意事项和常见问题。通过本文的...

关键字: 扬声器 音质 音响系统

飞行时间光学传感在智能手机上实现世界首个准确的个人空气质量监测器和烟雾探测器

关键字: 智能手机 烟雾探测器 扬声器

两家企业在无线、音频和语音技术领域长期紧密合作,共同见证全球领先的OEM厂商在扬声器、音箱、耳塞和智能手表等消费类设备采用炬芯科技的高品质、低延迟无线音频 SoC

关键字: AIoT 处理器 扬声器 智能手表

CEVA RealSpace® Tuned by THX™专业调校空间音频软件用于TWS耳塞、无线耳机、智能手机、扬声器和条形音箱

关键字: 无线耳机 智能手机 扬声器

作为在音频技术领域的新势力,xMEMS以突破性的技术在2023年取得了巨大的成绩,除了全新固态保真扬声器Cypress的推出以外,还与创新科技Creative等国际知名品牌合作,推出了首款搭载xMEMS固态保真扬声器的T...

关键字: 扬声器

在音频设备中,功放芯片是至关重要的组件,它负责将微弱的音频信号放大,推动扬声器或其他音频输出设备产生声音。市场上有很多品牌的功放芯片,但哪个更好呢?本文将为您介绍一些常见的音频功放芯片品牌,并分析它们的优缺点,以帮助您做...

关键字: 音频设备 功放芯片 扬声器

中国,北京-2023年11月15日-固态全硅微型扬声器领域的先锋xMEMS Labs今天宣布在声音重现方面取得革命性突破,改变了大众市场上真无线立体声 (TWS) 耳塞在音频全频带上创造高品质、高分辨率声音体验的方式。...

关键字: 硅扬声器 超声波 扬声器

虽然“隐形的声音”听起来有点荒谬,但它却是描述身临其境的声音或你在媒体娱乐中可以实际感受到的声音的一种常见方式。想象一下《侏罗纪公园》中霸王龙出现时的情景,几场小型地震引起了标志性的水杯震动,预示着霸王龙的出现。大型影院...

关键字: 触觉传感器 声音传感器 扬声器

通过降低测试设备的底噪,提高车载音频质量标准。

关键字: 车载音响 麦克风
关闭
关闭