当前位置:首页 > 消费电子 > 消费电子
[导读]MAX9217/MAX9218 串行器和解串器芯片组通过一对儿双绞线LVDS 链路实现视频数据传 输,广泛用于汽车和工业应用领域。视频信号的每一帧总是存在消隐周期,可以利用这些周 期“承载”音频数据。在本应用笔记

图1. MAX9217/MAX9218的视频链路设置


图2. 串行链路的视频数据和控制数据格式

数字音频数据类型和传输格式
数字音频数据有多种不同格式。我们讨论3种最常用的格式:采样数字音频(PCM)、MPEG层3音频(MP3) [2]和ATSC数字音频压缩标准(AC3) [3]。

PCM数字音频是CD ROM或DVD采用的数据格式。对左右声道的音频信号采样得到PCM数字信号,采样率为44.1kHz,精度为16位或32位。因此,精度为16位时,PCM音频数据速率为1.41Mbps;32位时为2.42Mbps。一张700MB CD可保存大约60分钟的16位PCM数据格式的音乐。

MP3是MP3播放器采用的音频格式,对PCM音频数据进行压缩编码。立体声MP3数据速率为112kbps至128kbps。对于这种数据速率,解码后的MP3声音效果与CD数字音频的质量相同。AC3是数字TV、HDTV和电影数字音频编码标准。立体声AC3编码后的数据速率为192kbps。

为了恢复音频信号,可将编码后的音频数据送入音频解码器芯片,该芯片生成PCM数字数据,传送至音频DAC,最终恢复成模拟音频信号。相反,没有编码的数字音频数据可以直接送入音频DAC。(下面详细说明这种类型的系统实现。)

编码或解码音频数据的常用串行音频数字接口是Inter-IC音频总线(I²S) [4]。图3所示为I²S接口配置和时序图。每个音频字的边界由信号WS标识。在我们的应用中采用配置模式1。在SCK信号的上升沿,数据被锁存至接收器,但是当SCK保持低电平时,不接收数据。

图3. I²S接口配置和时序

 

使用MAX9217和MAX9218之间的串行链路仿真I²S接口,可以将音频数据从图形控制器一端传送至远端。我们将控制位C3和C4分别分配给SD和WS信号。对于SCK时钟,如果要发送PCM数字音频,可以直接使用MAX9218恢复的像素时钟PCLK_OUT。对于传送MP3或AC3音频,可采用控制位C5为SCK时钟生成一半或较低速率的像素时钟。图4显示了这两种情况的时序波形。为防止接收器溢出,大部分I²S接口需要进行节流控制,连续发送数据时,可以将SCK置低,直接实现节流控制。图4中Case 1,工作期间SCK信号无法置低,可以使用片选引脚/CS关闭接收器。在这种情况下,图4中的Case 1将C6分配给/CS信号。


图4. I²S接口的控制数据位波形

消隐比和音频数据吞吐率
由于音频数据是通过视频信号的消隐周期传输的,我们需要确定给定像素频率fP下行消隐比和场消隐比。图5所示为显示面板上的行消隐和场消隐周期。


图5. 行消隐和场消隐
以RL表示行消隐比,RF表示场消隐比,由图5所示,我们可以按以下各式计算这些比值:

RL = (I1 + I2) / L



RF = (f1 + f2) / F

由此得到音频数据吞吐率RA,即:

RA = (RFδF + (1 - RF) RLδL) fP

其中δF和δL是消隐周期中的音频数据传输利用率。利用率是指整个消隐周期中,音频数据传输所占的比例,是节流控制的结果。作为一个实例,表1所示参数为3种类型的音频数据设置数据速率。

表1. 不同类型音频数据的消隐参数设置

Audio Data Type fP RA RB F L Data Rate
16-Bit PCM Audio Data 35 0.02 0.03 81% 82% 1.41Mbps
MP3 17.5 0.01 0.01 35% 38.5% 128Kbps*
AC3 17.5 0.01 0.01 50.3% 60% 192Kbps*


*注:MP3和AC3音频数据都含有头文件。考虑到这些信息后,实际的编码数据速率会稍高一些[2, 3]。

 

系统实现

要在面板端播放音频信号,我们需要将PCM数据送至音频DAC或解码MP3和AC3数据,然后将其送至音频DAC。由于没有反向通道将握手信号回送给控制器,解码器主机时钟必须与像素时钟同步,以防止数据上溢或下溢。图6所示为编码和未编码数据音频重放的系统结构图。


图6. 面板端音频重放实现

在上述结构图中,采用了3次I²S接口。从左边开始,第一和第二个I²S接口的数据速率相同,能够达到35MHz。第三个接口—
MAX9850 DirectDrive耳机放大器[5]接口,速率固定为音频采样率的倍数。时钟SCK2送入MAX9491多路时钟发生器[6],它产生解码器、FIFO和MAX9850的同步时钟。MAX9491提供包含OTP的两个可编程PLL,是本应用的理想频率合成器。Case 1适用于提供解码PCM音频数据的图形控制器,Case 2用于面板端压缩数据的解码。Case 1的节流控制由/CS引脚实现,Case 2中通过空闲SCK时钟实现。对比这两种实现方式,我们看到PCM音频数据的Case 1不需要占用太多的消隐时间(表1),不需要使用音频解码器芯片,成本低于Case 2。因此,如果图形控制器能够从MP3或AC3等编码音频数据流中生成PCM数据,建议直接在链路上传送这些数据。
 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭