当前位置:首页 > 消费电子 > 消费电子
[导读]摘要:本系统采用了意法半导体公司的STM32F407微处理器作为核心,以OV7670作为监控系统的视频采集传感器,并将传感器采集的数据通过DMA控制器成功地发送至液晶模块(SSD1289)显示。该系统运行流畅,为低端视频监控系统

摘要:本系统采用了意法半导体公司的STM32F407微处理器作为核心,以OV7670作为监控系统的视频采集传感器,并将传感器采集的数据通过DMA控制器成功地发送至液晶模块(SSD1289)显示。该系统运行流畅,为低端视频监控系统提供了一种新的解决方案。

引言

本系统着眼于经济型视频监控系统,可应用于工业自动化设备、汽车安全驾驶、医疗设施或大楼供水、供电等系统的监控,应用前景广阔、成本低廉、系统简洁。

1 芯片简介

1.1 STM32F407简介

本系统采用的处理器是意法半导体公司的STM32F407,该处理器以32位Cortex—M4为内核,具有浮点运算功能的低端高速ARM,其内部集成了大量可供立即使用的资源,如TFT液晶显示器接口(Flexible Stactie Memory Control,FSMC)、摄像头接口(Camera Inter face)、DMA控制器等,方便且实用。

1.2 OV7670简介

OV7670是OmniVision公司基于CMOS VGA的图像传感器,可通过SCCB总线控制输出整帧、子采集、取窗口等操作,其VGA图像最高可达到30 fps。其对外重要接口有:XCLK(时钟输入)、HREF(输出行同步信号)、VSYNC(输出场同步信号)、PCLK(输出像素时钟)、RESET(复位输入信号)、PWDN、SIO_C(SCCB总线时钟信号)、SIO_D(SCCB总线数据信号)、D0~D7(摄像头输出数据信号)。

本系统采用的OV7670不带FIFO,由STM32F407直接通过SCCB总线读取数据,并显示在LCD上。

2 硬件和软件实现

2.1 硬件实现

本系统硬件电路实现简单,微处理器与系统主要外设连接如图1所示,主要涉及STM32F407与TFT液晶模块连接以及与OV7670图像传感器的连接,接口电路如图2、图3所示。

STM32F407与TFT液晶模块连接时,仅需将该模块考虑成一个SRAM即可,具体连接方式见图2。唯一需要注意的是,液晶模块RS和CS端与STM32F407的FSMC控制器的连接,本系统中RS连接FSMC_A0(PF0),CS连接FSMC_NE4(PG12),这些连接直接关系到软件初始化时相关寄存器地址设置。

如图3所示,STM32F407与OV7670连接时,OV7670的XLCK PC9可以选择STM32F407的MC01或MC02引脚,同时PCI SOIC和SOID PC2引脚可以连接至I2C总线,也可以根据软件设计定义其他I/O引脚(本系统采用了这种方案),OV7670的其他端口连接至DCMI相应接口即可。

2.2 软件实现

本系统的软件设计关键点在于系统时钟的配置、TFT液晶模块初始化、OV7670图像传感器初始化、SCCB总线时序模拟。软件程序流程图如图4所示。

系统时钟配置由RCC_Config()函数完成,函数内部结构如下:

TFT液晶模块初始化关键点在于FSMC控制器的配置和寄存器地址的计算。STM32F407的FSMC使用了AHB3提供的时钟信号,因而需要使能AHB3时钟以及FSMC控制器复用的其他I/O端口所在时钟信号。寄存器地址则需要根据液晶模块的RS和CS端与FSMC接口的具体连接方式计算。由于STM32F4系列微处理器的FSMC控制器对外设备地址映射从0x60000000开始到0x9FFFFFFF结束,共有4个BANK组成,每个BANK大小为256 MB,每个BANK又分为4个小块,每块大小为64 MB。

在TFT液晶初始化程序中选择了BANK1,且CS连接FSMC NE4(PG12),故TFT液晶模块的寄存器起始地址为0x6C000000;RS连接FSMC_A0(PF0),故TFT液晶模块的RAM为0x6C000000+20×2=0x6C000002。如果在TFT液晶初始化程序中选择了BANK1,且CS连接FSMC NE1(PD7),TFT液晶模块的寄存器起始地址为0x60000000;RS连接FSMC A18(PD13),TFT液晶模块的RAM为0x60000000+218×2=0x60080000。

依次类推可以计算其他连接方法时,液晶模块的寄存器起始地址和RAM地址。代码如下:

#define LCD_RAM *(vu16*)((u32)0x6c000002) //定义RAM基地址

#define LCD_REG *(vu16*)((u32)0x6c000000) //定义REG基地址

OV7670图像传感器初始化关键点有两个,首先是微处理器的DCMI接口及DMA部分的配置,这些配置主要体现在DCMI接口、DMA控制器以及图像传感器用到的其他I/O端口所在时钟总线使能方面;其次是OV7670本身寄存器配置方面。由于篇幅所限,现将一些重要的函数列出,并给出重要注释,仅供参考。

SCCB总线时序模拟可以根据SCCB标准中定义的时序进行程序编写,这一部分为大家所熟知,不再赘述。

结语

通过以上程序编写、软件和硬件的调试,最终得到比较满意的结果,如图5所示。

虽然视频图像显示有点模糊,且画面略有顿挫感,但是可以通过软件、硬件的再优化提升画面效果,同时也为STM32F407OV7670视频监控系统中的应用提供思路。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭