当前位置:首页 > 消费电子 > 消费电子
[导读]摘要:本文介绍了可应用于室內物品定位的改进LANDMARC定位系统。该算法在原始算法基础上对RFID标签进行分类,同时引入了参考误差的概念来提高系统定位精度。改进后的算法结合RF code公司硬件设备组建定位系统。实验

摘要:本文介绍了可应用于室內物品定位的改进LANDMARC定位系统。该算法在原始算法基础上对RFID标签进行分类,同时引入了参考误差的概念来提高系统定位精度。改进后的算法结合RF code公司硬件设备组建定位系统。实验结果表明,改进后的算法减少了定位时间,提高了室內物品的定位精度。

引言

目前,用于室内定位的技术主要有红外线定位技术、WiFi定位技术、ZigBee定位技术、超宽带定位技术、RFID定位技术等。其中RFID定位技术具有非视距传播、传输范围大、读写速度快、安全性高等优点,相比其他定位技术,更适合用于室内物品的定位、追踪。

1 RFID技术简介

RFID是一种利用射频信号通过空间耦合(电感或电磁耦合)实现无接触的信息传输手段,它通过射频信号自动识别目标对象并获取相关数据,可工作于各种恶劣环境,并可同时识别多个标签,操作快捷方便。

2 LANDMARC系统

为了增加室内系统定位精确性而不增加阅读器数量,LANDMARC系统引入了位置固定的参考标签来辅助定位。系统结构如图1所示,其中包括4个RF阅读器、49个参考标签和9个待定位标签。

LANDMARC定位技术采用了在统计学上称为“最近邻居”的思想,选择了k个信号强度值与待定位标签相近的参考标签,利用加权算法,计算待定位标签的坐标。算法过程如下。

假设有n个RF阅读器,m个参考标签,u个待跟踪标签。定义跟踪标签p的信号强度矢量为:Tp=(T1,T2,…,Ti,…,Tn)T。其中Ti表示阅读器i感知到的跟踪标签的信号强度,i∈(1,n)。定义参考标签q的信号强度矢量为:Rq=(R1,R2,…,Ri,…,Rn)。其中,R1表示参考标签i的信号强度。跟踪标签p和参考标签q的欧几里得距离(D):为:

通过比较D中各分量的值,找出跟踪标签p的k个最近邻居,称这种方法为k-最近邻算法。其他u-1跟踪标签用同样的方法找出k个最近邻居。跟踪标签坐标(x,y)可以按下式计算:

3 改进的LANDMARC系统

3.1 改进的LANDMARC系统算法

图2表示算法改进后的标签布局。改进算法引入标签分层的概念,将定位区域分为若干个小的定位子区域(Sub Location Area)。每个子区域由1个主参考标签(Primary Reference Tag)图2中灰色圆点和8个相邻的次参考标签(Secondary Reference Tag,图2中白色圆点)组成。改进算法中,分层结构可以根据实际跟踪标签数量作具体调整。

算法具体定位过程可以分为如下4个步骤:

①确定跟踪标签所在的定位子区域。假设有p个主参考标签,由式(1)、(2)计算跟踪标签和主参考标签之间的距离矢量D=(D1,D2,…,Dp),对D中各分量排序,最小欧式距离对应的主参考标签所在区域就是所求的定位子区域。

②每一个定位子区域可以进一步分成4个定位区域,如图3所示。

假设在式(1)中确定的主参考标签为PTk,选取PTk周围相邻的8个次参考标签,计算8个次参考标签和跟踪标签之间的欧氏距离,选出距离跟踪标签最近的次参考标签ST1。在剩余的7个次参考标签中选出与跟踪标签次近的次参考标签,同时这个标签必须是ST1的两个相邻的标签之一。这样确定了1个主参考标签和2个相邻的次参考标签,也就确定跟踪标签所在的矩形区域。由上述定位步骤可知,这个矩形区域由1个主参考标签PTk和3个相邻的次参考标签(ST1、ST2、ST3)组成。

③使用k-最近邻算法和加权算法计算跟踪标签的位置。这里式(3)中k=4时:

改进算法把参考标签分为主参考标签和次参考标签这两层,逐层搜索跟踪标签的最近邻居,实现快速定位。

④为了进一步减小改进算法的定位误差,提高定位精度,引入修正误差向量的概念。通常情况下,跟踪标签和最近邻居距离不超过1 m,因此可以近似认为两者定位误差向量相同。可以用它修正式(5)计算得到的跟踪标签坐标。

为了计算修正误差,首先需要确定距离跟踪标签最近的参考标签,称为关键参考标签(Key Reference Tag,KT)。比较主参考标签PTk和3个相邻的次参考标签(ST1、ST2、ST3)到跟踪标签的欧式距离,选出关键参考标签。利用式(2)~(4)计算得到KT的计算坐标(p’,q’),已知KT的真实坐标为(p,q),因此可以得到KT的定位误差向量:

3.2 改进的LANDMARC系统硬件

改进算法选择RF Code公司的M100标签和M250阅读器。M100标签实物如图4所示。

M100属于有源标签,其典型传输范围为90m,工作频率为433.92 MHz。M100标签中安装了防拆开关,因此较适合用于物品的跟踪。在低速状态下,标签电池寿命可达5~7年之久。

M250阅读器实物如图5所示。M250阅读器直接提供射频信号强度值,可以同时监视1400个信标速率为10 s的标签。

M250阅读器有多种接口形式传输数据,可通过USB口、有线以太网接口,也可使用阅读器内部集成的802.11b/g无线网卡。阅读器支持加密连接(HTTPS和SSH),并支持以太网供电(PoE)RF Code M250阅读器产品接口如图6所示。

实验中,将M250阅读器以太网接口连接到路由器的LAN口,采用TCP/IP协议传输数据。路由器把所有标签的信号强度数据通过网络转发到后台处理计算机上。计算机端编程实现RFID定位管理平台,可通过Internet获取标签数据,实现节点的远程控制和管理,并进行定位参数设置、数据处理、定位结果显示。定位平台基于.NET Framework 4.0,采用C#编程语言实现。基于.NET Framework 4.0的定位管理平台如图7所示。

4 实验和讨论

图8展示了10次实验,系统分别应用两种算法得到的误差比较图。在第5次实验中,原始算法误差为0.97 m,改进算法误差为0.65 m,改进算法定位误差减少32.7%。另外,在其余各次实验中,改进算法也均有10%以上的精度提高,改进算法的定位精度整体高于原始算法。两种算法误差比较如图8所示。

改进算法利用参考误差修正跟踪标签的计算坐标,抵消了部分环境因素对定位精度产生的干扰,使得改进算法的定位精度优于原始算法。

结语

本文在讨论RFID技术和LANDMARC算法的基础上,提出了参考标签的分层结构,并引入参考误差的概念用于改进原始算法,通过实验证明改进算法具有更快的定位速度和更高的定位准度,可广泛应用于室内物品的定位和管理,具有一定的研究和实际应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭