当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:在工程实际中,很多被控对象具有时变、非线性的特点,用常规的控制方法难以进行控制或者控制效果不好,为了对这类实际系统进行有效地控制,本文基于模糊控制器的基础上,设计实现了一种双模糊控制器,根据实际

摘要:在工程实际中,很多被控对象具有时变、非线性的特点,用常规的控制方法难以进行控制或者控制效果不好,为了对这类实际系统进行有效地控制,本文基于模糊控制器的基础上,设计实现了一种双模糊控制器,根据实际系统输出信号的误差大小利用两个模糊控制器分别进行控制,以改善系统的快速性和消除误差。从仿真结果来看,和常规PID控制及普通模糊控制相比,双模糊控制器有效地减小了系统稳态误差,响应时间、超调量、稳定时间等性能均优于传统的PID控制和模糊控制。
关键词:双模糊控制器;时变;非线性;性能

    传统的控制方法均建立在被控对象的精确数学模型之上,随着系统复杂程度的提高,建立系统的精确数学模型和满足实时控制要求将越来越难以实现。模糊控制是模拟人的思维方法,无需建立系统精确数学模型,在处理时变和非线性系统上取得了很好的应用效果。很多专家和学者应用模糊控制实现了复杂系统的设计和仿真,如曾鸣等人应用双模糊控制器用于车辆半主动悬架控制、周妮娜应用于模糊控制器实现对锅炉除氧系统,张松兰等人设计了锅炉汽包水位模糊自适应控制策略,冯冬青等设计了一类时变非线性系统的参数反馈模糊控制器等。
    从设计仿真结果来看,使用单模糊控制器虽然在很多性能上超越了传统的PID控制,但是对于具体工业系统而言,系统的输出波形仍然存在着一定的偏差,系统的稳态误差问题始终没有得到很好的解决。本文试图设计一种新的双模糊控制器,解决系统输出的稳态误差问题。

1 双模糊控制器的设计
    单模糊控制器主要用于快速响应及对大误差的消除,在单模糊控制器中,将其误差量化因子Ke增大,从而相当于缩小了误差的基本论域,增大了对误差变量的控制作用。同时,将误差变化率因子Kec增大,以减小超量。将控制量的比例因子Ku减小,以减小系统振荡。
    双模糊控制器原理图如图1所示。假设变量eo为大、小误差的临界值(人为可以根据实际设定),当系统误差较大时,用单模糊控制器1控制,以达到快速响应、消除误差的目的;当系统的误差较小时,用单模糊控制器2进行控制,从而改善模糊控制器对于系统误差较小时的控制效果,进而帮助取得较好的控制效果。


    进行仿真时,给定输入信号为单位阶跃信号。控制对象为一典型时变对象,数学模型表示为:,其中,T1、T2为时间常数,分别为100 s和72 s,τ为系统滞后时间10 s,K为比例系数,值为2。该系统是一个大滞后系统,非线性特性,属于典型的工业控制对象。
    设计双模糊控制器时,将输入信号误差e量化为8个等级,{NB,NM,NS,NO,PO,PS,PM,PB},误差变化率ec和输出变量u量化为7个等级,{NB,NM,NS,ZO,PS,PM,PB},误差e及误差变化率ec、输出变量u论域为[-6,6]。误差e及误差变化率ec、输出变量u的隶属度函数选为梯形隶属度函数如图2所示。


    在总结专家经验和知识的基础上,得到模糊控制规则表如表1所示。控制规则多少决定了控制系统的精度,控制规则的多少也与输入输出变量数目、每一变量的语言值数目等因素有关。本系统共设计了56条规则如表1所示。


    使用的推理方法是最大最小推理法。最终推理结果是以模糊子集的形式来表示系统的输出量阀门的校正量。阀门不能用这样的表示方式进行调节,故需进行模糊量的精确化,本设计中采用了重心法来进行解模糊。

2 仿真过程及结果
    利用MATLAB的SIMULINK进行仿真,建立本系统的双模糊控制器仿真结构图如图3所示。仿真结构图里设计了两个子系统,见图3,两个子系统结构基本一致,只是具体参数选取不同。


    利用SCOPE观察实验结果、记录,对比试验结果,其中图4为常规PID控制输出结果,图5为模糊控制器输出结果,图6为双模糊控制器输出结果。


    从结果对照图来看,系统响应时间的对比:双模糊控制响应时间最短,模糊控制其次,常规PID控制响应时间最长;常规PID控制到达稳态600 s左右的时间,模糊控制需要400 s到达稳态,而双模糊控制器不到300 s即可到达稳态。
    常规PID控制存在明显的超调,模糊控制及双模糊控制则没有超调。模糊控制方法和双模糊控制器方法区别在于,模糊控制器存在2%~5%左右的稳态误差,而双模糊控制器在稳态时消除了稳态误差。

3 结束语
    本文设计实现了一种双模糊控制器,利用双模糊控制器完成了对系统的仿真。仿真结果显示,双模糊控制器的上升时间短,响应速度快,稳态精度高。从实验来看,双模糊控制器可以改善系统的控制精度和稳定性能,若将此理论应用于实际工程,无疑具有很好的应用价值。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭