当前位置:首页 > 工业控制 > 工业控制
[导读]以MC68376集成CAN控制器为例,阐述了纯电动车(Eleotdc Vehicle,简称EV)电控系统采用SAEJl939通信协议实现CAN总线通信的设计要点,给出了基于CAN通信的动力蓄电池监控系统的电池充放电特性曲线。实验证明CAN总线通信

以MC68376集成CAN控制器为例,阐述了纯电动车(Eleotdc Vehicle,简称EV)电控系统采用SAEJl939通信协议实现CAN总线通信的设计要点,给出了基于CAN通信的动力蓄电池监控系统的电池充放电特性曲线。实验证明CAN总线通信速率高、准确、可靠性高。

随着汽车上电子控制装置越来越多,车身布线也愈来愈复杂,使得运行可靠性降低,故障维修难度加大。为了提高信号的利用率,要求大批数据信息能在不同的电控单元中共享,同时汽车综合控制系统中大量的控制信号也能实时进行交换。但是,传统的汽车电子系统采用串行通信的方法,如用SAE1587等标准来实施,通信速度较慢、传递的数据量少,远不能满足高速通信的需求。近年来CAN总线已发展成为汽车电子系统的主流总线,并有基于CAN总线通信协议的车辆应用层通讯标准SAEJ1939[1~4]产生。

图1

    利用CAN总线开发的纯电动车(EV)电控系统的通信网络具有通信速率高、准确、可靠性高的特点,易于整车控制网络的连接和管理,为传感器信号、各个控制单元的计算信息和运行状态的共享以及随车或离车故障诊断等提供了基础平台,同时开发基于该通信网络的控制器在线标定和实时监测系统也成为可能。    1.2 EV电控系统CAN通信的设计    下面以32位高智能微处理器MC68376为例介绍EV电控系统CAN通信的设计。    1.3.3 MC68376 CAN通信软件的设计

本文采用基于CAN2.OB的SAEJ1939通信协议,以MC68376为例,设计开发了应用于EV电控系统的CAN总线通信系统。

图2

1 EV电控系统CAN通信的设计

1.1 EV控制系统CAN总线通信原理

在EV控制系统中,控制器包括:制动控制器(ABS/ASR)、动力总成控制器PTCM(Powertrain Control Module)、动力蓄电池管理器BPCM(Battery PackControl Module)、驱动电机控制器DMCM(Driver Motor Control Module)、动力转向控制器及仪表控制器IPCM(1nstrument Pack ControlModule)等。在各控制器之间通过CAN通信网络交换数据,实现数据共享并使各自的控制性能都有所提高。图1为EV各控制器之间的CAN通信原理图。

 

根据CAN通信原理,硬件主要由CAN控制器和CAN驱动器组成。动力控制总成PTCM和电池管理控制模块BPCM采用32位高性能微处理器MC68376上集成的CAN控制器;仪表控制器IPCM模块采用FUJ 32位高性能微处理器上集成的CAN控制器;电机控制DMCM模块、动力转向控制模块和制动控制模块采用SJA1000控制器。CAN驱动器全部采用PCA82C250。

图2是EV的车载CAN通信网络节点连接图,每个总线末端均接有用RL表示的抑制反射的负载电阻。负载电阻连接在CAN-H和CAN-L之间,对于不带集成终端电阻(通常使用)的ECU,此电阻为60Ω;对于带有集成终端电阻的ECU,此电阻为120Ω。终端负载电阻最好置于总线末端,取消ECU内部的负载电阻RL,因为如果其中一个ECU从总线断开,总线将丢失终端。

 

1.3 基于MC68376的EV电控系统CAN通信的设计[6~7]

1.3.1 MC68376内嵌的TouCAN的基本特性

TouCAN模块是MC68376内嵌的实现CAN通信协议的CAN控制器。其最高传输速度高达1Mbit/s,可同时支持CAN协议中的标准(11位)和扩展(29位)ID两种报文模式。TouCAN模块包含16个具有发送和接收功能的报文缓冲器。此外,它还具有报文过滤功能,用于对接收到的报文ID码和预先设定的接收缓冲区ID码进行比较,从而确定接收到的报文是否有效。

图3为TouCAN的结构框图,其中CANTX和CANRX分别为发送和接收引脚。

    1.3.2 MC68376 CAN通信硬件接口的设计

图4是CAN节点硬件接口电路原理图,其中CAN+5V是CAN总线接口电路专用的电源,实现CAN总线电源与CPU电源的隔离,使CAN系统的电压波动不影响CPU的正常工作电压。6N137为光电耦合芯片,可实现电信号之间的电气隔离。

PCA82C250用来提供对总线的差动发送能力和对CAN控制器的差动接收能力,完全与ISO11898标准兼容。在运动环境中,PCA82C250具有抗瞬变、射频和电磁干扰的性能,内部的限流电路在电路短路时具有对传送输出级进行保护的功能。

图6

 

各控制器按规定格式和周期发送数据(车速、蓄电池电压、电流和温度等)到总线上,同时也要接收其它控制器的信息。总线上其它控制器根据需要各取所需的报文。对于接收数据,本系统采用中断的方式实现,一旦中断发生,即将接收的数据自动装载到相应的报文寄存器中。此时还可采用屏蔽滤波方式,利用屏蔽滤波寄存器对接收报文的标识符和预先在接收缓冲器初始化时设定的标识符进行有选择地逐位比较,只有标识符匹配的报文才能进入接收缓冲器,那些不符合要求的报文将被屏蔽于接收缓冲器外,从而减轻CPU处理报文的负担。并且不同数据放人不同的报文寄存器中,因此在接收中断服务程序中即可很容易地判断出中断是由哪个接收报文引起的。

图5为基于MC68376的CAN通信程序流程图。

图7

2 CAN通信在EV电控系统开发中的应用

EV电控系统CAN通信建立了各控制器之间的通信网络,实现了各控制器之间以及与仪表盘的信息互通。通过开发的在线标定系统和监测系统,在PC机上可以实时监测各控制器的参数。图6和图7为利用CAN通信设计的镍氢电池实时监测系统获得的充放电特性曲线。CAN通信数据传输速率为500kbit/s,该系统实时地反映了镍氢电池充放电的特性。

CAN总线作为一种可靠的汽车计算机网络总线已开始在先进的汽车上得到应用,使得各汽车计算机控制单元能够通过CAN总线共享所有的信息和资源,达到简化布线、减少传感器数量、避免控制功能重复、提高系统可靠性和可维护性、降低成本、更好地匹配和协调各个控制系统的目的。这样使得汽车的动力性、操作稳定性、安全性都上升到新的高度。随着汽车电子技术的发展,具有高度灵活性、简单的扩展性、优良的抗干扰性和处理错误能力的CAN总线通信协议必将在汽车电控系统中得到更广泛的应用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭