当前位置:首页 > 工业控制 > 工业控制
[导读]中断信号源并关小音量,喇叭中总有哼声,开 大音量时更为突出,甚至在一些商品胆机中也或多或少地存在此问题。于是烧友们加大扼流 圈电感、加大电容,在滤波电路中大摩特摩,然而却收效不大。接地点

中断信号源并关小音量,喇叭中总有哼声,开
      大音量时更为突出,甚至在一些商品胆机中也或多或少地存在此问题。于是烧友们加大扼流
      圈电感、加大电容,在滤波电路中大摩特摩,然而却收效不大。接地点左换右接,偶然在某一点噪声大减就如获至宝,似乎这个低噪声接地点是千试万试试出来的,神秘莫测,也有人试得不奈烦就由它去了。另一个误区是认为由于石机有稳压电源、电子滤波电路,背景噪声小是当然的,而胆机没有,于是也给胆机加稳压电源,弄得电源十分复杂,效率大打折扣。

        消除背景交流声有两个途径。一是抵消法,以毒攻毒,但在此毒非彼毒时不能奏效,即必须以波形相同、相位差正好180度的噪声源去抵消噪声,虽然方法被动但使用得当也还有
      效。比如前级灯丝接地电路中的平衡电位器、推挽输出电路两臂板流中噪声分量相互抵消等就是此法的应用。另一方法是寻找噪声来源加以切除,从根本上杜绝噪音,本文主要讨论这个方法。

                              图1 较典型的胆机电路  
        过去曾流行过使用接地母线的方法装配胆机,母线使用较粗的镀银铜线,因其电阻很小,对克服静态噪声有一定的效果,但在今天HI-FI的高要求条件下此法已落伍。如图1所示的为较典型的功放电路,其中粗线条为接地母线。现在我们对噪声来源进行分析,由整流器输出的直流脉冲电流充人C1,经母线流回整流器,那C1接地点左边部分均有100Hz脉冲电流经过,是污染重灾区,这一段母线切记不可与任何放大器电路相连。经C1平滑后仍有一定的100Hz脉冲成分经L1恒流充入C2,C2中的100Hz脉冲电流成分已大为减弱。它在接地母线中流经C1、C2负极间的一段,因此这一段母线也不要接人放大电路。C2的右边已基本不存在100Hz脉冲电流污染,但经由C2正极端,由功放管所消耗的大音频电流却要由功率管V4、V5阴极电阻人接地母线流回C2负极。阴极电阻入地点到C2负极接地点这一段母线又成了音频污染源。这个音频压降直接经C3、C4反馈回前级,轻则产生波形失真、重则引起自激振荡,危害极大。同理C3中流过推动级V3的音频电流在C3负极端与C2负极端间接地母线上产生音频压降,通过C4污染给V1。同时输出变压器二次侧的负反馈信号通地点也有输出级大动态音频电流在母线上一段压降的污染,通过Rf送人高灵敏度的V1阴极,也使负反馈信号紊乱,破坏音质。通过以上分析可知,虽有接地母线,但这台功放还是情况不妙。

                        图2 星型接地法连线示意图 
        针对以上问题的对策如图2所示,取消接地母线,把所有滤波退耦电容集中布置,所有接地端汇总一点E。整流器负极单独用一条线接人这一点,功放管V4、V5阴极电阻接地点E1用一根线接人这一点。如果是固定偏压则负压整流滤波电路接地点也应汇人E1,接人这一点。同理推动级V3阴极电阻通地点E2也单独用线接人这一点。而V2为板阴分负载倒相,因为它无放大量,所以可和输入级V1共用一条地线E3,接人正点,用线只需0.5—0.75mm2。所有地线从E点呈星状散开,故此得名。为使负反馈端不受功率级电流污染,可用屏蔽线外层把输出“O”端与E3端相连,芯线传输负反馈信号。至于正极端由于各B+
      点已由退耦滤波电阻隔离,只需选取足够的R、C时间常数即可。为配合很高的信噪比,输入级灯丝应采用直流供电。一般左右声道可不必分别用线接地和接B+,这已不影响信噪比。但若要更高的左右声道分离度,则左右声道也要分别用线。

        笔者最近用星形接地法装配了一台胆机,数据已标于图2中,输入级用SRPP电路可降低感应噪声,并且V1、V2灯丝都为直流供电。倒相、推动、功率3级均采用威廉逊电路,
      负载3800~t时RMS功率为2x25W。原本音质优秀的电路,加上星形接地法的应用如鱼得水,音质纯净无比。该机不仅工作稳定,信噪比也出奇地高,音量钮无论放在什么位置,只要停止信号源,在深夜里耳贴音箱竟无法查觉已是开机状态,对信噪比来讲真是事半功倍。这样低的背景噪声恐怕晶体管机也较难达到,不信您可一试。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭