当前位置:首页 > 工业控制 > 工业控制
[导读]摘要:本文给出基于Kinetis MK60N512微控制器和16位/24位音频数模转换器MAX5556的立体声音频接口设计。MK60N512由I2S总线向MAX55 56传输音频数据,输出音频信号经有源滤波器进行滤波,保证音频质量的同时提高其带

摘要:本文给出基于Kinetis MK60N512微控制器和16位/24位音频数模转换器MAX5556的立体声音频接口设计。MK60N512由I2S总线向MAX55 56传输音频数据,输出音频信号经有源滤波器进行滤波,保证音频质量的同时提高其带负载能力。由MK60N512内部高性能可编程的增强型DMA向I2S模块传送音频数据,减轻微控制器内核的负担。
关键词:Kinetis;MK60N512;MAX5556;增强型DMA;I2S总线

引言
    MK60N512是飞思卡尔公司Kinetis系列微控制器集成度最高的芯片,它基于ARM Cortex—M4内核,具有功耗低、性能高、成本低的特点,旨在为嵌入式音频、汽车电子和电源管理等提供灵活的解决方案。MAX5556是美信公司一款低功耗、立体声音频数/模转换器(DAC),支持标准I2S总线协议,采样精度最高可达24位,采样率为2~50 kHz。采用∑-△调制技术,能够对量化噪声进行有效整形,减小量化噪声。
    音频处理系统中,采用DMA实现音频数据在微控制器内的传输,能减少内核的参与,降低内核负担。系统的数据传输通道如图1所示,音频信号暂存在缓存区中,由DMA传输到I2S总线模块的发送电路。为了保持音频信号的连续性,采用“乒乓RAM”设计缓存。图中A/B表示乒乓RAM的编号。



1 MK60N512 I2S总线和eDMA介绍
1.1 I2S总线模块
   
MK60N512的I2S总线模块有3种基本操作模式:普通模式、网络模式和门控时钟模式,针对音频上的应用,I2S总线模块还支持两种衍生模式:I2S总线模式和AC97模式。I2S总线模块的结构如图2所示,由发送电路、接收电路、串行时钟和帧同步时钟产生电路组成。STCK、SRCK分别为串行发送、接收时钟端口,STFS、SRFS为串行发送、接收帧同步端口,STXD、SRXD为串行发送和接收数据端口。在同步模式下,STCK端口被发送和接收单元共同使用。


    发送电路和接收电路均有两个FIFO,宽度为32位,深度为15。对发送数据寄存器TX0/TX1和接收数据寄存器RX0/RX1的写入与读取可以访问这些FIFO。发送逻辑将TX FIFO中的数据转移出来,装入发送串行移位器TXSR,然后从STXD端口串行发送;接收逻辑将数据从输入的数据帧中转移出来后,将它们放入接收RXFIFO的入口。当TX FIFO中空缺数目或RX FIFO数据达到设定的数目时,会触发中断或者DMA传输。
1.2 eDMA
   
MK60N512的eDMA高度可编程,数据传输高度优化而几乎不需要CPU内核干预。与普通的DMA不同,eDMA的传输由主循环(Major Loop)和辅循环(MinorLoop)组成。主循环由外设自动触发,每次主循环结束后源地址、目的地址都会按照TCDn_SOFF、TCDn_DOFF寄存器中的值自动偏移而不需要CPU去修改。除了所有传输结束后产生中断申请外,eDMA还支持“半中断”,即主循环完成总循环次数一半时产生中断申请,这特别适合“乒乓RAM”设计。

2 MAX5556介绍
2.1 引脚定义和内部结构
   
MAX5556内部结构如图3所示,MCLK为主时钟,LRCLK为左/右声道选择时钟,SCLK为外部串行时钟,SDATA为串行音频输入,OUTL/OUTR为左/右声道输出。串行接口模块获取音频数据后,由内置数字插值器、滤波器对其进行滤波,以去除基带音频信号携带的谐波噪声;音频数据经∑-△调制器调制后由DAC转换,输出的模拟信号经由内部的模拟低通滤波器进行滤波,衰减高频量化噪声;内置输出缓存器能驱动大于3 kΩ的负载电阻和高达100 pF的负载电容;最终模拟音频信号从OUTL/OUTR输出。


2.2 工作模式
   
MAX5556支持外部串行时钟模式和内部串行时钟模式。在一个LRCLK周期内,若检测到有效的SCLK,则进入外部串行时钟模式,SCLK作为采样时钟;如果检测不到有效的SCLK,则进入内部串行时钟模式,采样时钟由内部生成。内部采样时钟的频率根据检测到的MCLK与LRCLK的比值确定,若MCLK与LRCLK的比值为384,则内部采样时钟频率为48×fLRCLK;若MCLK与LRCLK的比值为256或512,则内部采样时钟频率为32× fLRCLK。
2.3 数据格式
   
MAX5556支持左对齐16位或者24位数据格式。当其工作在外部串行时钟模式,或工作在内部串行时钟模式,且同时MCLK与LRCLK的比值为384时,有效数据为24位。如果数据不足24位,低位补零;超过24位的数据会被忽略。当工作在内部串行时钟模式,且MCLK与LRCLK的比值为256或512时,有效数据为16位。MAX5556数据格式如图4所示。每次LRCLK沿变化后的第二个SCLK上升沿时,SDATA上数据开始有效,出现最高有效位(MSB);24个或者16个时钟周期后出现最低位有效位(LSB)。LRCLK为0时,数据进入左声道DAC;LRCLK为1时,数据进入右声道DAC。



3 系统硬件电路设计
   
MK60N512通过I2S总线将音频数据传输给MAX5556进行数模转换,输出模拟音频信号由滤波电路进行滤波,同时提高带负载能力。I2S总线模块工作在I2S总线主模式下,发送电路的STCK、STFS和STXD端口对应的引脚分别为BCLK、TX_FS和TXD,I2S总线模块的主时钟通过MCLK引脚输出。硬件电路如图5所示。由于MK60N512工作在3.3 V电压下,而MAX5556工作电压为5 V,为了提高数据传输的稳定性,接口均采用上拉方式。


    LM358在5 V单电源供电时有效输出为1.5~3.5 V,而MAX5556的输出可以达到0~5 V,因而在输入端使用R1和R2对原始信号进行衰减,防止输出信号出现削顶失真。

4 软件设计
4.1 “乒乓RAM”设计
   
MK60N512的I2S总线模块在I2S总线模式下支持双声道,音频数据在FIFO中交错存放,因此在缓存中的音频数据也需要交错存放。数据缓存如图6所示,其中L/R表示音频左/右声道。每个音频数据占用4个字节空间,缓存BUFF_A、BUFF_B在物理地址上是连续的,它们大小均为512字节,共存储256个音频数据。当DMA从缓区BUFF_A中读取数据时,CPU向缓存区BUFF_B中存储下一组音频信号;当DMA将BUFF_A中的数据全部传输结束后,将DMA通道源地址切换到BUFF_B,同时CPU向BUFF_A存储数据,如此反复。


4.2 I2S总线模块的配置
   
配置I2S总线模块工作在I2S总线主模式下,默认一帧数据长度是32位,而且为左对齐模式;使用帧同步TX_FS作为声道选择时钟,且同步帧长度为一个字。由于MAX5556的SCLK信号由MK60N512提供,MAX5556工作在外部串行时钟模式,有效数据位是24位,因而配置发送数据位为24位。按照MAX5556的数据格式,数据需要在SCLK下降沿输出从TXD数据,且需要发送早期帧同步,让数据延迟一个采样时钟,还需要根据音频采样频率设置帧频率。


    使能TX FIFO和其DMA请求,当FIFO中空缺数达到8时,启动一次DMA主循环。图7为音频数据在TXFIFO移动过程。图7(a)中FIFO为满,随着发送移位逻辑从FIFO从取出一个数据后,FIFO产生一个空缺,如图7(b)所示。当发送8次数据后,FIFO空缺数达到8个,则触发DMA主传输,如图7(c)所示。
    I2S总线的初始化代码略——编者注。
4.3 eDMA配置
   
当TX FIFO空缺数达到8时,触发DMA主循环,故每次主循环传输数据数目是32字节,每次主循环源地址偏移也是32字节,完成缓存区1 024字节数据传输需要32次主循环。第16次主循环结束,DMA已经将BUFF_A中所有数据传输完毕,DMA源地址指向BUFF_B,并产生“半中断”请求,CPU开始向BUFF_A中存储下一组512字节音频数据。
    当BUFF_B中数据传输结束后,源地址恢复到BUFF_A起始地址,并产生中断请求,CPIJ响应中断并向BIJFFB中存储下一组512字节音频数据。可以看出,在传输过程中,CPU只需要响应两次中断请求,然后向缓存区写入音频数据。每次主循环结束后源地址偏移32字节,完整的传输结束后,源地址恢复到BUFF_A起始地址,这些操作都是通过eDMA模块自己完成的。
    DMA的初始化代码略——编者注。

5 测试结果
   
图8为TX_FS和TXD的波形图,通道1为TX_FS,通道2为TXD。左/右声道发送的音频数据均是0x555。图8(a)的发送帧频率为48 kHz,图8(b)的为44.1 kHz。从图8中可以看出,数据长度为24位,左对齐模式,而且数据与帧同步有一个采样时钟的延时,符合MAX5556的数据格式和时序。



结语
   
本文设计了基于Kinetis MK60N512和MAX5556的立体声音频接口,MK60N512将音频数据按照MAX5556的数据格式和时序通过I2S总线传输给MAX5556,MAX5556内部DAC将数据转化为模拟信号输出,并由滤波电路对音频信号进行滤波,同时提高带负载能力。使用MK60N512内部高性能可配置的eDMA提高系统数据传输速率,降低CPU的负担。测试表明,系统能输出立体声音频,输出频率可调,可以为Kinetis系列微控制器音频解决方案提供参考。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭