当前位置:首页 > EDA > 电子设计自动化
[导读]摘 要:本文重点介绍基于DSP和FPGA、采用中频数字化方法,以及QPSK扩频调制技术来实现图像的无线传输。对扩频通信系统的同步问题提出了一种实现方法,并给出了部分实验结果。 关键词:图像传输;扩频通信;同步;FP

摘 要:本文重点介绍基于DSPFPGA、采用中频数字化方法,以及QPSK扩频调制技术来实现图像的无线传输。对扩频通信系统的同步问题提出了一种实现方法,并给出了部分实验结果。
关键词:图像传输;扩频通信;同步;FPGA;DSP

视频通信是目前计算机和通信领域的一个热点。而无线扩频与有线相比,有其固有的优越性,如联网方便、费用低廉等。所以开发无线扩频实时图像传输系统有很高的实用价值。

系统设计
在短距离通信中,通常可以在收发端加入奇偶校验、累加和校验等出错重发的防噪声措施。但以上措施都只能检错,不能纠错,也就是说传输过程中不能容错。在远距离、干扰大、出错概率非常高的情况下,单纯的出错重发措施会失去工作效率和意义。因此,需要一种能容错的数据传输方式,就要对数据编码。采用扩频技术,并选取具有优良自相关特性和互相关特性的高速伪随机码对待传信号带宽进行扩展,可增强系统的抗干扰能力。在对图像数据压缩后,采用QPSK扩频调制技术。
系统的DSP由主控和基带两片DSP组成。主控DSP属于系统的控制中心,用于完成控制系统接口总线的指令,将完成诸如自检、信道预置、D/A和A/D变换、工作模式切换和AGC等。主控DSP还协同FPGA管理系统时钟,完成与基带DSP之间的任务协调和数据传输,管理系统总线和区分数据、信息类别以及控制接口。基带DSP主要完成图像数据的压缩编码和数据的信源、信道编解码、组拆帧等。当进行图像数据的发送时,DSP控制数据输入经过随机加扰、同比特扩展、加编码器尾比特、1/2卷积编码和交织处理,再进行信号流组帧、拆帧处理,同时加入控制信息进行连续同步发送。当进行数据接收时,DSP的操作刚好相反,经解扩、解调和提取控制信息后,形成连续的图像信号流,DSP完成去交织、Viterbi译码、去尾比特、多位判决和去扰处理,还原成图像信号,再经信源解码和图像数据的压缩解码。
系统的FPGA主要完成RS编码和时钟分频。在发端基带信号处理模块中,DSP将一帧信息数据交给FPGA进行RS编码,编码的结果为m+n(m、n均为特定系统所确定的常量,下同)个字节,其中前m个字节为信息数据,后n个字节为校验码元。FPGA编码结束后通知DSP进行数据接收,DSP收到通知后接收编码结果。在收端基带信号处理模块中,DSP将一个RS帧(m+n个字节)的数据交给FPGA进行RS解码,FPGA解码结束后产生m个字节的解码结果,然后通知DSP接收解码数据,DSP接收到通知后进行解码结果的接收。

FPGA与DSP之间的通信
FPGA对数据进行处理后,再将数据送入两片DSP。在FPGA里面做一个FIFO,当FIFO存至一定容量时,就向DSP发一个读数中断,DSP就可通过I/O口将数读取,FIFO容量减小。然后,FPGA继续往FIFO送待处理数据,累计到一定容量,就再发中断,以此循环。
用FIFO的好处在于处理起来较为简单,但是也会出现DSP读数速度与处理速度的和大于FPGA往FIFO填数速度的情况,或是DSP漏检读数中断。这两种情况都会导致FIFO被填满而不再发中断,DSP进入死等待而不再工作。为了防止死等待状态的出现,以下两条措施有必要在DSP编程中得以体现:
1. 尽量加快DSP I/O口的读取速度,以及一次中断的处理速度,使其时间小于FPGA向FIFO输入响应数据的速度。在本系统的设计中,FIFO一次给DSP送4092个数,FPGA向FIFO输入4092个数耗时330ms,也就是说,DSP读取这4092个数的时间加上对它们的处理时间不能超过330ms。在随后的设计中优化了DSP的很多指令及接口设计,使其一次中断的响应时间为100ms,大大提高了系统的性能。
2. 如果是其他原因,如板上的电气干扰使得DSP漏检中断,则也有可能使FIFO堆满,导致系统进入死等待。对于这种情况,应在DSP程序中加入判决算法,正常情况下,DSP应该每隔330ms响应一次中断,但如果较长时间没有中断到来,DSP则必须发出响应指令重启FPGA,清空FIFO

系统的同步问题与解决
由于本系统采用了直接序列扩频通信技术,扩频系统的同步是成功通信的前提条件,如果没有同步,也就无法解调出信码,扩频系统的抗干扰优势也就无法发挥。由于收、发时钟的不一致性,扩频序列的启动时差,电波传播时延等因素,接收端启动的扩频序列与接收到的发送扩频序列开始总是不同步的。因此,收端必须采用一定的技术措施,迫使本地扩频序列与发端的扩频序列同步,这就是扩频码的捕获。在取得同步之后,噪声及一些外来因素的干扰还会迫使已取得的同步出现失锁现象。为此,还应采取保持同步的技术,这就是同步跟踪。
对同步过程的处理,采用的依据是:连续5次最大相关值位置相等,则认为实现了同步捕获;如果相邻10次最大相关值位置中有2次不等,则将进行失步重捕判据。对码同步的处理主要有3个方面:同步主流程、相位差检测与后微调处理、多普勒频移处理。

结语
在系统的初步调试过程中,曾遇到了以下几个问题:
1. 调制端由于I、Q两路不平衡,造成I、Q两路相关峰输出幅度差一个数量级,为后面数据判决基带时钟提取带来问题。
2. 经过几次采样分析,采样结果不稳定。
3. A/D采样后的数据存在直流成分。
按照本文所述的同步处理思想,接收端经同步处理后,获得了较好的相关峰值。
本文基于DSPFPGA,采用中频数字化方法以及QPSK扩频调制技术实现了图像的无线传输。这些设计思想和结果具有普遍性和通用性。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭