当前位置:首页 > EDA > 电子设计自动化
[导读]摘要:本文首先介绍了PSoC3内部的模拟总线分布,说明了PSoC Creator的模拟布线功能以及在设计中需要遵守的一些应用规则,在模拟资源使用较多或对模拟性能要求较高的应用中,设计者要遵照这些规则以达到高性能和高资源

摘要:本文首先介绍了PSoC3内部的模拟总线分布,说明了PSoC Creator的模拟布线功能以及在设计中需要遵守的一些应用规则,在模拟资源使用较多或对模拟性能要求较高的应用中,设计者要遵照这些规则以达到高性能和高资源的使用。
关键词:PSoC3,模拟布线

1,PSoC3模拟总线介绍
    PSoC3内部可以分为模拟和数字两部分,模拟部分包括Delta-Sigma ADC、运算放大器、比较器、DAC和SC/CT模块。数字部分包括如CPU、RAM、ROM、DMA、UDBs、时钟等等。

    模拟全局总线(AGs)和模拟多路复用总线(AMUXBUS)提供GPIO与内部模拟模块之间的连接,如图1所示,PSoC3一共有16根AGs分别分布于4个象限,每个象限包括4根AGs总线(AGR[7:4], AGR[3:0], AGL[7:4], 和AGL[3:0]);AMUXBUS可用于任何GPIO和大部分模拟模块输入输出之间的连接。这样,AGs和AMUXBUS可在GPIO和模拟模块之间提供高达18路的信号连接。

    对于内部模拟模块之间的互连,PSoC3采用模拟局部总线(ABUS)来完成,ABUS总线一共8根,其中4根ABUSL[3:0]位于芯片左边,4根ABUSR[3:0]位于芯片右边。

    另外在GPIO和模拟模块之间还有大约20路的专用通道,这些专用通道可提供低阻抗连接,比如在PSoC3中的IDAC和运算放大器Opamp,后面第3部分专门介绍。


 
图1,PSoC3 内部模拟/数字部分分布

2,PSoC3模拟布线事例
    Cypress提供的软件工具PSoC Creator可为用户提供模拟布线,当然用户也可以自己手动布线模拟器件以选择更好的管脚和更优的走线,下面以一个设计事例来说明。

    若需要信号从P4[0]和P4[1]输入,经PGA1和PGA2放大,然后接入ADC的差分输入以采集信号,其在PSoC Creator中设计的原理图如下图2所示:


 
图2,PSoC Creator原理图

编译后,PSoC Creator自动布线,在PSoC3芯片中实际的走线如图3所示:


 
图3,PSoC3实际走线图

从图3可以看出,GPIO P4[0]和P4[1]是通过AGL[4]和AGL[5]连接到SC/CT模块的。而PSoC3芯片中两内部模块SC/CT和DSM ADC之间的连接是通过ABUSL1和ABUSL3实现的。

3,GPIO直接连接布线
    如前所述,有些模块可以不经过AMUX/AGs或者ABUS而直接连接到指定的GPIO口上。对VIDAC而言,只有当它配置为电流数-摸转换器(IDAC)时才可以直连到GPIO口的,表1列出了每个DAC和GPIO口的对应连接。


表1,IDAC直接连接GPIO口

运放op-amp模块同样可直接连接到指定的GPIO上,如图4所示。表2列出了可与Opamp输入输出直接连接的GPIO口。


表2,Opamp直接连接GPIO口

 
图4,GPIO直接连接Opamp0和Opamp2示意图

从图4可以看出,P0[1]和P0[0]是直接连接到OPamp0和OPamp2的输出,当然,你也可在PSoC Creator中设计为把OPamp2的输出连接到其它管脚上,但此时P0[0]上依然有OPamp2的输出。所以建议用指定的GPIO口与之相连。对如图5所示正弦波输出应用事例,WaveDAC8_1的作用是产生正弦波,Opamp2配置成电压跟随器模式以提高正弦波的驱动能力,VDAC8_1和Opamp_0用与提供参考电压,Comp_1是比较器。如前所述我们应将Opamp2的同向输入SineSignal_1配置为P0[4],输出Sinewave_1配置为P0[0]。


 
图5,正弦波输出应用事例

4,模拟管脚的最佳选择规则
    PSoC3系列中管脚最多资源最丰富的封装是100Pin TQFP,它有7个完整的8-Pin I/O口,这56个 GPIO均可用做模拟信号的输入输出。端口P0、P3和P4位于芯片的上半部,并且有模拟全局总线AGL[7:4]和AGR[7:4]与之相连,对于那些低于16bit模拟性能要求的应用,任何GPIO口都可使用并且性能都一样,但对需要高性能低躁声的应用,最好选择P0、P3和P4作为其输入输出管脚。

    因此,对于模拟管脚的选择,应遵守下列步骤:
    1) 对于给定的应用需要多少个模拟管脚I/O
    2) 决定哪些信号需要特定的GPIO口作为其输入输出,把这些GPIO口优先分配
    3) 然后依次从P0、P3和P4对其他模拟输入输出口分配管脚
    4) 在模拟GPIO管脚与设计所需要的其他管脚之间画条线
    5) 注意保持所有的模拟管脚在所画线的一侧,而所有的数字管脚在线的另一侧。

    经过上述步骤就可简单的在芯片和电路板上把模拟和数字信号隔离。如下图6所示:


 
图6,理想的模拟数字信号隔离

有时应用设计需要多种信号的混合,比如精确的模拟信号、低分辨率的模拟信号、低速度的数字信号和高速的数字信号,这时可以用低精度和低速的数字信号来隔离高精度的模拟信号和高速数字信号,如下图7所示。


 
图7,三种信号的混合分布

5,结束语
    本文是对PSoC3内部模拟布线管脚选择的一个简单介绍,对PSoC3芯片设计规定的IDAC和Opamp直接连接到GPIO做了详细的说明,但没有涉及太多太深的模拟信号知识。如果有用户觉得不够详细或者在使用PSoC3过程中碰到什么问题可参考PSoC3的技术操作手册。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭