当前位置:首页 > 工业控制 > 电子设计自动化
[导读]杰尔系统宣布,该公司的工程师已经找到了半导体封装材料成分的新组合,使半导体行业能够成功地实现无铅封装。该公司创新的方法可在封装过程中去除铅,并消除了在推出无铅封装产品时存在的潜在缺陷。杰尔系统的半导体

杰尔系统宣布,该公司的工程师已经找到了半导体封装材料成分的新组合,使半导体行业能够成功地实现无铅封装。该公司创新的方法可在封装过程中去除铅,并消除了在推出无铅封装产品时存在的潜在缺陷。杰尔系统的半导体封装新技术可提高芯片的可靠性和性能,并完全去除目前在芯片中广泛使用的有害成分-铅。虽然欧盟强制使用无铅半导体封装至今仅有一年的时间,但这项限制未来将会被推广至全世界的每种半导体封装,这将影响到总市值达1660亿美元的半导体产业中之数万亿颗芯片。每家制造或使用芯片的电子产品厂商都正努力寻找适合的的材料组合,以使其产品能销售至欧洲以及其它制定类似法律的国家。杰尔系统此项研究成果即解决了工艺变更中时遇到的各种潜在问题。与业界大多数厂商一样,杰尔系统致力于研究正确的封装材料组合,希望借此制造出可靠的无铅产品。杰尔系统的发现主要归功于其在出货前评估产品品质时,充分考虑到了客户的需求。目前,大多数芯片封装都会在铜金属上覆盖一层锡与铅材料。在封装行业向无铅封装转移时时,许多封装将仅在铜表面覆上一层锡,并且通过电子设备制造商以远高于封装内部铅材料熔点的温度下进行生产。杰尔系统的研究成果显示:铜上覆锡的封装能通过现今许多专为含铅组件所制定之产业标准测试。然而,当以客户的角度来使用这些组件时,杰尔系统发现在量产铜上覆锡的封装时会形成 “锡须”,从而导致电子短路或断线,并造成其它系统错误。JEDEC固态科技协会的三项测试加上美国国家电子制造业创进会(MEMI, National Electronics Manufacturing Initiative)的技术指南,能更有效率地过滤出锡须。在三项测试中有两项测试显示出,在铜上覆雾锡(matte-tin)与铜上覆镍底雾锡(NICkel undercoated matte-tin)这两种材料组合之间并没有明显的不同。杰尔系统的第三项测试结果则显示在铜与锡层之间加入一层镍,在客户的现实生产环境中将产生大幅改进的效果。杰尔系统在生产无铅封装时,曾运用不同的镀锡工艺来评估多种半导体封装技术。杰尔系统发现以锡取代铅作为金属电镀材料时,在经过无铅组装制程后在半导体封装上会长成 “锡须”。由于锡须的长度足以造成短路,并导致电子系统产生故障,进而演变成一项严重的问题。为解决这项问题,杰尔系统在锡与铜组件层之间加入一层镍,结果发现能抑制锡须的成长。
杰尔系统封装与互连技术部门总监Melissa Grupen-Shemansky博士表示:“我们发布此项发现,是希望半导体行业能借鉴我们的方法,以避免在采用铜与锡金属封装技术时所遭遇的问题。我们运用科学的方法长时间测试多种选项,结果发现杰尔系统的锡-镍-铜组合能解决在高温、高湿度储存环境所产生的锡须问题。”NEMI锡须测试小组与杰尔系统合作进行了一项独立研究,其初步结果发现,在商业化量产组件的铜上覆锡封装上产生许多锡须,NEMI预计将在2005年发布其研究结果。在电子系统中,微芯片通常是运用一层塑料或陶瓷外层作为保护,也就是所谓的封装。芯片封装提供三大主要功能:保护芯片免于受到外界的破坏、支持电子连结以及散热。直到现在,许多封装的外层通常会覆有金属针脚,将锡铅电镀芯片连结至电路板,以便使能有效且可靠的将焊锡连结至系统电路板。将铅加入金属电镀合金能有效抑制锡成长或造成 “锡须”现象。锡须长成的原因是一种压力释放的机制,长成的锡须长度达到一定上限时就会影响电子联机,进而造成微芯片的故障。许多企业在转移至无铅封装时运用锡或铜的组合。然而,当计算机设备供货商在面临特定的组装状况下,进行长时间的可靠度研究时即发现运用锡-铜的材料组合往往会长成锡须。杰尔系统在评估多家封装厂商的样本时,发现这些解决方案无法满足电子产业在确保长期可靠度的应用需求。杰尔系统的研究结果则显示出锡-镍-铜的组合是一项可靠的替代方案。虽然杰尔系统的锡-铜组合能满足顾客在某些封装方面之需求,但仍需持续研究以期能满足顾客对于更高可靠性的需求。杰尔系统系统组装与测试部门副总裁John Pittman表示:“锡须的存在对于无铅半导体封装的影响将延伸至整个半导体产业,因为这些锡须造成的电子短路,将持续加大企业与消费性产品所面临的设备故障风险。镍解决方案将协助半导体行业广泛采纳无铅封装技术。目前得知的好消息是镍已普遍存在现今的封装工艺中,因此业界将能轻易使用“无锡须”的锡-镍-铜解决方案。”

来源:0次

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭