当前位置:首页 > 工业控制 > 电子设计自动化
[导读] 摘 要: 提出一种基于岛间队列特征的动态电压频率缩放控制算法,使用岛间队列增长率和使用率来实现电压岛工作电压/频率的动态控制。该算法引入岛间队列增长率实现了简单高效的负载预测,提高了片上通信稳定性。仿真分

 

摘 要: 提出一种基于岛间队列特征的动态电压频率缩放控制算法,使用岛间队列增长率和使用率来实现电压岛工作电压/频率的动态控制。该算法引入岛间队列增长率实现了简单高效的负载预测,提高了片上通信稳定性。仿真分析表明,该算法能够更好地节能降耗。
关键词: 片上网络; 电压岛; 动态电压频率缩放; 低能耗; 岛间队列

基于电压岛的动态电压频率缩放DVFS(Dynamic Voltage and Frequency Scaling)技术能够大幅度地降低片上网络NoC(Network on Chip)的能耗,从而受到广泛关注[1]。在基于电压岛的NoC上,电压和频率的改变以整个电压岛为单位,DVFS设计需要全面考虑电压岛内所有的IP核。与针对单个IP核的DVFS控制算法相比,基于电压岛的DVFS控制算法需要考虑的因素更多,设计也更为复杂。
目前,针对基于电压岛的DVFS控制算法的研究并不多。为了应对工作负载的快速变化,参考文献[2]提出一种基于全局电压岛输入队列使用率的反馈控制算法。该算法使用反馈控制,较好地应对了工作负载的变化。而参考文献[3]指出参考文献[2]的控制算法逻辑资源消耗过高,缺乏全局控制,在参考文献[2]的基础上提出CF-g反馈控制算法,该算法利用片上的g个输入队列,实现了电压岛简单、高效的工作电压控制,达到了资源和效率的平衡,但是该算法并没有大幅度降低片上逻辑资源的开销。同时,参考文献[2]和参考文献[3]的算法存在的共同问题是只能控制电压岛的一个输入队列,导致整个系统的稳定性较差。
针对上述问题,本文依据参考文献[4]提出的输入队列包到达模型提出一种基于岛间队列特征的DVFS控制算法。该算法使用电压岛的所有输入/输出队列参与电压岛的电压/频率控制,提高了片上通信的稳定性,引入岛间队列使用率和增长率进行负载预测,提高了算法的效率。
1 算法设计
1.1 电压岛间队列使用率的数学模型
在基于电压岛的NoC上,电压岛间的每个链路两端各有一个缓存队列,如图1所示,可将这种缓存队列简称为岛间队列[4]。电压岛VFI1是队列q的输入电压岛,电压岛VFI2是队列q的输出电压岛;相应地,队列q是电压岛VFI1的输出队列,也是电压岛VFI2的输入队列。设队列q的平均包到达速率为f1λ,包服务速率为f2 μ,f1和f2是第k个控制周期内(即[(k-1)T,kT))两个电压岛的频率,队列q的使用率q(k)∈[0,1]可表示为:

岛间队列增长率直接指示了当前队列使用率的变化:当p(k)>0时,增长率为正,这时使用率q(k)增加,即队列中待处理的数据包增加;当p(k)<0时,使用率负增长,此时的使用率减小,即队列中待处理的数据包减少;当p(k)=0时,表示当前队列使用率不变,该队列处于平衡状态。
1.2 算法思想描述
本文将电压岛的频率和电压划分为几个离散的等级,每次调整将增加或者降低一个等级。为了实现对工作负载的预测,引入岛间队列增长率。另外,岛间队列使用率准确描述了当前队列的使用情况,指示了当前的片上通信状况。本算法综合两者的信息得到当前岛间队列对电压岛的频率需求(升频、降频)。
针对当前的控制算法无法达到控制所有岛间队列的问题,通过全面考虑电压岛的输入、输出队列对电压岛工作频率的需求,综合全局信息来配置电压岛的电压和频率。在保证通信稳定的前提下尽量降低能耗,对于增频请求和降频请求,依据保证系统通信稳定的原则,优先处理增频请求。
本算法采用全局控制方式,整体结构如图2所示。设控制周期为T,在第k个控制周期开始时,对各个电压岛的频率和岛间队列的使用率进行采样;然后将采样信息输入全局电压/频率控制模块进行运算,得到当前的岛间队列增长率;之后,由全局电压/频率控制模块依据DVFS控制算法得出各个电压岛在下个周期的电压和频率;最后,由电压/频率生成模块对电压和频率进行转换,电压和频率转换完成后,进入第k+1个周期。

电压岛的电压和频率采用离散值,算法每次将电压岛的工作频率升高或者降低一个等级。
1.3 使用岛间队列的DVFS控制算法原理
对于由J个电压岛组成的NoC,假设电压岛i有m个输入/输出队列。本算法根据电压岛的输入/输出队列的使用率q(k)和增长率p(k)来控制电压岛的工作电压,以实现DVFS控制。考虑到输入/输出队列对电压岛工作频率的不同需求,将两者分开考虑,其对应的控制请求可分为输入队列请求和输出队列请求。
本算法通过综合q(k)和p(k)的信息控制电压岛的频率,使p(k)在区间[0,1)之内变化。其原理如下:
在图 1中,对于队列q,当p(k)>0时,若保持电压岛VFI1的频率f1和电压岛VFI2的频率f2不变,则队列的使用率q(k)会持续增加。这种情况下,当q(k)较小时,无需考虑降低频率f2或者增加频率f1;当q(k)较大时,为避免队列拥塞(即防止q(k)=1),为其设置门限值ThH, 当q(k)到达门限值ThH时,可以降低输入电压岛的频率f1或者增加输出电压岛的频率f2;当使用率q(k)很小时,若降低队列的输出电压岛频率f2,则增长率p(k)>0变大,加快了q(k)增加的速率。为了解决此时能否降低f2的问题,设置了q(k)的可降频门限ThD。当p(k)>0,q(k)<ThD时,可以降低队列的输出电压岛的频率;当增长率p(k)>0时,如果队列的输入电压岛的频率f1将在下一个控制周期被提高,按照式(2)推断增长率p(k)会变大,此时有必要降低输出电压岛的频率f2的门限,令这个门限值为ThI,本文称之为输出电压岛从动升频门限。
当p(k)<0时,若保持f1和f2不变,队列的使用率q(k)会持续减小,此时不必考虑q(k)过高而导致队列拥塞;当使用率q(k)过低时,可以增加输入电压岛的频率f1或者降低输出电压岛的频率f2。为了降低能耗,本算法不主动增加输入电压岛的频率, 这时设置队列使用率q(k)的门限ThL,当q(k)到达此门限值时,降低输出电压岛的频率;若输出电压岛的频率f2降低,则增长率变大,使用率有可能会增加,此时,若q(k)∈[ThH,1],则不能降低输出电压岛的频率f2;若q(k)∈[ThL,ThH),则可以降低输出电压岛频率f2。
当p(k)=0时,队列的输入输出达到平衡,队列对电压岛的频率没有升降请求。
本算法的控制方法如表1、表2所示。

 

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭