当前位置:首页 > 工业控制 > 电子设计自动化

摘 要: 基于FPGA芯片Stratix II EP2S60F672C4设计实现了数字基带预失真系统中的环路延迟估计模块。该模块运用了一种环路延迟估计新方法,易于FPGA实现。同时,在信号失真的情况下也能给出正确的估计结果。Modelsim SE 6.5c的时序仿真结果和SignalTaps II的硬件调试结果验证了模块的有效性。
关键词: 功率放大器;数字基带预失真;相关;环路延时估计;FPGA

随着现代无线通信产业的快速发展,为了充分利用有限的无线频谱资源,现代通信系统采用了正交调制和多载波技术。然而这些技术对发射端前置高功率放大器(HPA)的线性度提出了非常高的要求[1]。在功率回退技术、负反馈法、前馈线性化技术和数字预失真技术等常用的线性化技术中,数字基带预失真技术因其成本低廉而得到了广泛的应用[2]。
在基于查找表(LUT)数字基带预失真(DPD)系统[3]的实现过程中,DPD需要正确对比输入信号x(n)和功率放大器输出端的反馈信号z(n)。通常反馈信号相对于输入信号有一段时间延迟,这就破坏了预失真系统的稳定性,因此正确估计环路延迟并对其进行补偿就显得十分必要。
近年来,国内外学者对环路延迟估计进行了分析并提出了一些估计算法,如迭代法(Nagata Algorithm)[3]、延时锁定环路法(DLL Method)[4]和相关检测法(Correlation method)[5]等,它们都有各自的优缺点。 本文结合参考文献[6]提出的幅度差相关算法和参考文献[7]中基于数据流相关运算的改进算法提出了新的方法。该方法在用于FPGA实现时难度低于参考文献[6],同时在信号失真的情况下也能给出正确的估计值。
1 环路延迟估计算法
环路延迟是指信号从系统输入端到反馈输出端所产生的时间延迟。通常,反馈信号z(n)相对于输入信号x(n)都会有一段时间的延迟,并且该延迟会随着时间和温度的改变而改变,故需要对其进行实时估计。
参考文献[6]提出的幅度差相关法为:

算法通过搜索R(m)的最大值得到环路延迟的估计值。其通过对信号幅度的差取符号,减少了运算量。但用于FPGA实现时,需要复杂的时序控制,可实现度不高。
数据流相关运算的表达式为:

此算法通过误差的叠加尽量放大两信号之间的差异。当无整数倍延迟偏差时,两组数据差值最小,故可以通过搜索R(m)的最小值得到整数倍环路延迟的估计值。由式(5)可知此算法具有运算复杂度低和易于实现的优点,但它要求反馈信号未经衰落信道畸变及高斯噪声影响才可以实现。
针对上述两种算法的不足,本文提出了新的方法。其基本表达式为:

其中|·|表示取绝对值,其他符号的定义与参考文献[6]一致。
由PA输入、输出两组数据具有一定的相关性可知,当没有整数倍延迟偏差时,两组数据差值最小,故可以通过搜索R(m)的最小值得到整数倍环路延迟的估计值。
对比式(6)和式(1)可知,本方法在用于FPGA实现时比参考文献[7]要减少一个计算D[x(n)]×D[z(n-m)]的步骤;同时本方法在计算时只涉及到加减运算,故其时序控制比参考文献[6]简单。对比式(6)和式(5),本方法先通过式(2)保留信号的变化信息,再通过式(6)保留输入信号和反馈信号之间的相似性,故其不用像参考文献[7]那样对反馈信号有要求。不过,本方法和其他相关算法一样要求输入信号的周期必须大于环路延迟的值。
2 Matlab仿真结果及分析
为了验证本文所提方法的有效性,进行了仿真分析。仿真所采用的系统框图如图1所示,其中PA行为模型采用的是并行维纳结构,OFDM信号延迟了22个周期。

为了验证算法的鲁棒性,本文还给出了算法在反馈信号z(n)相对于输入信号x(n)失真不同程度的情况下,环路延迟估计值。其中,输入信号和反馈信号的功率谱密度如图2所示。反馈信号是输入信号经过PA后未加噪声、而加了SNR=30 dB和SNR=20 dB的高斯白噪声后得到的。图3所示为采用本文所提出的方法,对图2中的信号进行环路延迟估计给出的理论估计值。由图3可知,当反馈信号严重失真时,本文提出的方法也能给出正确的估计值,从而证明了本文所提方法的有效性。

3 环路延时估计的FPGA实现
根据实际数字基带预失真系统的需要,环路延时估计在采用FPGA芯片Stratix II EP2S60F672C4实现时,“相关窗”的长度L取250,共做了60次相关即k∈(0,60),其实现的结构框图如图4所示。

(1)接收存储数据。将所要使用的数据存储在FPGA的RAM中,存储的数据包含基带发射信号及接收信号的实部、虚部4组数据。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭