当前位置:首页 > 单片机 > 单片机
[导读]近年来以单片机为核心的便携式电子产品越来越多。为延长电池的使用寿命(或充电时间的间隔),要求稳压电源的压差(输人电压与输出电压之差)小、功耗小(静态电流小),并且要求在电池电压降落到 一定程度时,稳压器输出电

近年来以单片机为核心的便携式电子产品越来越多。为延长电池的使用寿命(或充电时间的间隔),要求稳压电源的压差(输人电压与输出电压之差)小、功耗小(静态电流小),并且要求在电池电压降落到 一定程度时,稳压器输出电压可降到门限电压,这样就能输出一个电池低电压信号(或称欠压信号),令 单片机复位。tps73系列就是为这一要求开发的有复位功能的低压差稳压器。

1.tps73系列的基本特点

tps73系列有3.3v,4.85v和5v固定电压输出及输出为1.2~9.75v可设定输出电压等4个品种,最大输出 电流可达500ma。

该系列主要特点有:

①输出电压精度高(20%);

②输出噪声低(2μa);

③压差低,在输出为100ma时,最大压差为35mv(tps7350);

④静态电流小,典型值为340μa(与负载电流大小有关);

⑤有关闭电源控制端,在关闭电源状态时,耗电仅为0.5μa;

⑥内部有监视输出电压电路,降到门限电压时,reset端输出低电平复位信号(当输入电压上升时,使输 出电压上升到门限电压时,有200ms的延迟后,输出正常电压);

⑦内部有过流限制及过热保护。

2.封装与引脚功能

tps7350有so-8封装及dip-8封装,其引脚排列如图1所示,各引脚功能见表1。

表1 tps7350各引脚的功能

*sense用于固定输出,fb用于可调输出

图1 tps7350的引脚排列

3.tps7350系列的典型应用电路

tps7350的典型应用电路如图2所示。这是一种不使用关闭电源控制的电路,故其②脚接地(低电平)。 下面主要介绍输人电容c,及输出电容c。的选择。

tps7350的典型应用电路 hspace=10 src=/embed_pic2/5fd3886bda6f850b3.gif align=right vspace=10 border=0>输人电容c1选择:当输人端离电池较近时,输人电容c1可以省略;当距离大于几英寸(1英寸=2.54cm) 时,可接0.047~0.1μf陶瓷旁路电容,它可以改进负载的瞬态响应;如负载电流较大时,则应采用大容 量的电解电容器。

图2 tps7350的典型应用电路

输出电容co要求大于10μf,并且要求等效串联电阻(esr)小于1.2ω,若esr较大时,则需要再并联一 个陶瓷电容(若小于200ma输出时,用小于0.2μf的;500ma输出时,可采用1μf的)。必须指出的是,输 出电容co的esr过大时,会产生错误的复位信号。例如,使用esr大于7ω的输出电容时,快于5μs的负载 瞬变可能会产生错误复位信号。建议采用优质钽电容。

带有关闭电源控制的电路如图3所示。其中图(a)是外加高电平时,电源工作;加低电平时电源被关闭 。图(b)是加低电平时电源工作;加高电平时电源关闭。图(c)是手动控制,按下按钮时,电源关闭。

4.tps7301的典型应用电路

tps73系列中的tps7301是可调输出的稳压器,输人电压为10v,输出电压为1.2~9.75v可调,其他性能与 固定输出电压器件相同。

tps7301的典型应用电路如图4所示。它与固定输出型不同之处在于需要外设两个


图3 带有关闭电源控制的电路

确定输出电压的电阻r1和r2。输出电压uo与r1,r2的关系为

式中,uref为器件内部的基准电压,典型值为l.182v。

r1及r2的选择与输出精度有关,它们的选择使分压器电流近似等于7μa.推荐的r2的数值为169kω(实 际使用时可采用170kω),而r1的值则根据要求输出的电压uo来计算,即r1=(uo/uref=1)r2,因为fb端 (输出电压检测端)有漏电流存在,所以应避免采用较大的r1和r2值,以免引起较大误差。

在实际使用中,r2可采用170kω电阻,而r1可采用相应的电位器来代替-可在一定范围调整满足输出电 压的要求,如图5所示。图中r,用500kω的多圈电位器代替时,可获得2~4.5v连续可调的输出电压。


图4 tps7301的典型应用电路   图5 用电位器代替r1的电路

在使用中,若找不到esr值小于1.2ω的固态钽电容时,可选择耐压较高的(如25~35v)电容,耐压高的 电容其esr较小。另外,可采用几只钽电容并联的方式来降低esr。

连续可调输出的电路,若输入电压u1较高,输出电压uo较低时,会增大稳压器的功耗。在自然通风条件 下,贴片式sd封装的功耗额定值为725mw(ta=25℃);dip封装的为1l75mw(ta=25℃)。必要时采用散热器或通风方式,以防止器件超过功耗极限。如果器件的温度超过 165℃,热保护电路会将电源切断,直到器件冷却下来稳压器才恢复工作。这一点在使用时要注意,即在 选择输入电压时要考虑功耗问题。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭