当前位置:首页 > 单片机 > 单片机
[导读] 摘要:设计一款可以通过人体动作对机器人进行控制的机器人控制系统。该系统由主机和从机两部分组成,通过Kinect体感传感器采集人体动作信息,在主机中进行图像处理解析出相应的人体动作,然后通过无线传输单元向机器

 摘要:设计一款可以通过人体动作对机器人进行控制的机器人控制系统。该系统由主机和从机两部分组成,通过Kinect体感传感器采集人体动作信息,在主机中进行图像处理解析出相应的人体动作,然后通过无线传输单元向机器人发送相应的控制指令,控制机器人做出响应,完成相应的一套动作或对人体动作进行实时模仿、制作的机器人样机运行良好,能够根据人体左右手的动作和语音命令,做出正确的响应。

随着机器人控制技术的迅猛发展,各类机器人已广泛应用于工业、农业、国防、科研、教育以及人们的日常生活等诸多领域。但目前机器人的操控方式却不乏单调,传统意义上的控制基本上是通过遥控器、按钮、操作手柄来实现的。文中则提供了一种新的控制方式——体感控制,即操作者可直接通过手势对机器人进行控制,巧妙地将Kinect体感技术与机器人控制技术结合,创造性地实现了机器人控制方式上的创新,实现更加自然的人机交互。

1 总体结构与工作原理

本控制系统以Kinect体感传感器作为图像采集工具,结合机器人控制技术,实现了人体动作对机器人的控制,使机器人更加智能化。装置由主机和从机两部分组成,系统总体结构如图1所示。主机用于人体动作信息采集,然后进行图像处理,识别出入体动作,并负责把人体动作信息无线传送给从机。

主机系统由PC机、Kinect体感传感器、XL02—232AP1无线传输模块组成。主机用于人体动作信息采集,然后进行图像处理,识别出人体动作,并负责把人体动作信息无线传送给从机。

从机则是一个动作执行机器人,它的控制系统由AVRatmega128单片机、无线传输模块、语音模块、BT37970B直流电机驱动模块等组成。它的机械结构主要由多自由度的手臂和四轮驱动的底盘构成。从机对信息进行实时处理,控制机器人手臂各个关节旋转相应的角度,从而完成相应的动作。

2 系统硬件设计

2.1 主机

1)Kinect体感传感器它是2010年由微软对XBOX360体感周边外设正式发布的名字,具有动态捕捉,影像辨识,语音识别等功能。基于该技术,可以利用手势在游戏中开车、与其他玩家互动、通过互联网与其他Xbox玩家分享图片和信息等,这也显示了它具有非常强大的图像采集与处理功能。

Kinect可以同时获取RGB和深度图像数据,支持实时的全身的骨骼追踪,并可以识別一系列的动作。图2是它的外观图,左边镜头为红外线发射器,中间镜头是一般常见的RGB彩色摄像头,右边镜头是红外线CMOS摄像头所构成的3D深度传感器。微软在2011年6月推出的Kinect for Windows SDK Beta使开发人员可以直接取得距离传感器、彩色摄像机以及四单元麦克风数组的原始数据流进行应用程序开发。此套SDK能够追踪Kinect视野内一位或两位用户的骨架映像,便于建立以体感操作的应用程序。

Kinect不同于普通摄像头的是,它有感知世界的CMOS红外传感器。该传感器通过黑白光谱的方式来感知环境,纯黑代表无穷远,纯白代表无穷近,黑白间的灰色地带对应物体到传感器的距离。它收集视野范围内的每一点,并形成一幅代表周围环境的景深图像。传感器以每秒30帧的速度生成深度图像流,实时3D地再现周围环境。

利用Kinect采集到的深度图信息,可以得到一个20点的人体骨架结构,其二维投影如图3所示,前景分割与骨架提取该系统直接调用了SDK封装函数,得到人体20个节点的3维空间坐标以及节点方向信息,进而得到完整的人体骨架信息。

运用这些信息可以提取出人体姿态特征以及运动特征,用于人体基本动作的识别。譬如,通过比较右手与头部的Y轴坐标差值的阈值变化,可以解析出右手是否举起,如图4所示。

2)通讯模块XL02—232AP1无线模块是UART接口半双工无线传输模块,可以工作在433 MHz公用频段。其传输距离约300 m,其工作电压+5 V,低功耗,可以与单片机I/O口直接相连,发射模式下串口速率为1.2~115.2 kbps,抗干扰能力强。连接电路如图5所示。

2.2 从机

1)动作执行机器人

①手臂动作控制

本作品所使用的机器人有两种结构形式,分别是类人机器人和轮式机器人,不同点是一个是双足站立的,一个是轮式的,它们每条手臂均由4个舵机构成,通过控制每个舵机的旋转角度可以得到不同的手臂动作和腿部动作,每8个舵机角度数据对应于一个特定的手臂动作。可以将每个手臂动作对应的8个舵机角度封装在一个结构体数组中,需要时可以直接调用。类人机器人的腿部动作的控制也是如此。

机器人手臂动作的执行有两种方式:根据从上位机传来的动作指令,做出对应的预先设定的一套动作;对人体的当前动作进行实时模仿,人体的动作信息解析出来后,在上位机中计算山对应的各个角度数据,然后将这些角度数据通过无线传输单元实时地传送到机器人,机器人做出响应,模仿当前人体手臂动作。

②机器人平面运动控制

机器人平面运动的控制针对的是轮式机器人,机器人的平面运动方式大致有4种,分别是前进,后退,左转,右转。这4种运动方式对应于4个指令数据,也同时对应着4个操作者的手势动作。通过真实的开车旋转方向盘来控制机器车的旋转,通过右手相对于左手的超前或落后来控制车的前进和后退,解析出这4个动作后,只需发送对应的4个指令数据即可。机器人硬件结构如图6所示。

2)通讯模块 同主机。

3)电机驱动模块BT37970B直流电机驱动,这是一款H桥有刷直流电机驱动模块,适用3~24 V的大功率直流电机,DC 10~29 V输入直流电压。在25 V电压下,额定持续输出10 A电流,适用于锂电池直接供电。供电为25 V 10 A时测得芯片工作频率高达1 MHz,驱动能力有了明显的提高,响应速度快。两路PWM输入,占空比可以在0~100%,是一般驱动所达不到的。具有瞬间制动能力以及做到全程速度精确控制。适用于锂电池直接供电驱动的机器人或车模比赛。控制方式简单,仅需要接3根输入线即可控制电机制动及正反转,其中GND引脚与单片机的GND相连,P引脚接单片机的PWM输出引脚,R引脚接单片机的PC0引脚,用于对电机转动方向的控制。连接图如图7所示。

4)语音模块最大输出功率为25W,具有30M存储容量,可以通过8个按键触发8段语音,也可以通过RS485/232给模块指令触发220段语音。

5)电源部分采用的是3S锂电池,容量为1500 mAh,额定电压11.1 V,35C超大放电能力。

3 系统软件设计

软件设计采用模块化处理方法,主机程序主要由主程序、Kinect初始化、图像辨识、语音识別、串口通信等模块组成,采用C#编写,编译环境为VS2010,使用部分环境库函数。从机程序主要有主程序、串口通信、电机驱动、舵机驱动、动作函数等模块组成。采用C语言编写,编泽环境为Avrstudi04,使用部分环境库函数。系统程序流程如图8所示。

Kinect将采集到的图像信息传送给上位机,上位机经过图像处理后识别出人体动作,并将处理后的结果输出,如图9所示。机器人实时模仿人体动作测试情况如图10所示。

4 结论

操作者可以站在离Kinect体感传感器3 m左右的距离对机器人进行体感操控。目前该机器人能够实时模仿左、右手各6个简单的动作:高举、半举、乎举、拥抱、架起、放下。以及实时模仿单腿抬起动作。你还可以通过双手模拟方向盘实时控制机器车的前后左右运动,亦可通过语音forward、back、turn left、turn right宋控制机器人的前后左右运动。

机器人在人们牛活中承担着越来越重要的作用,该系统则提供了一种新的控制方式——体感控制,使机器人的控制更加灵活多样,实现了更加自然的人机交互,具有较高的理论研究价值和先进性。同时,通过手势实时控制机器人的方式,能应用于排爆、救援、医疗等诸多行业,具有广阔的市场前景。在此基础上可以根据工业生产等需要,研发出更多种类的自动化机器人,为创建自动化机器人体系提供积极的支持和帮助。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭