当前位置:首页 > 单片机 > 单片机
[导读] 1、程序跑飞现象随着单片机在能源领域中的广泛应用,单片机的抗干扰问题越来越突出,煤矿井下环境一般比较恶劣,这便会为单片机控制系统带来各种干扰,以致系统不能正常工作。单片机应用系统的抗干扰性

1、程序跑飞现象

随着单片机在能源领域中的广泛应用,单片机的抗干扰问题越来越突出,煤矿井下环境一般比较恶劣,这便会为单片机控制系统带来各种干扰,以致系统不能正常工作。单片机应用系统的抗干扰性能主要取决于硬件的抗干扰设计,但软件抗干扰设计作为硬件抗干扰的完善和补充,作用也非常重要,因为大量的干扰通常并不能影响系统内硬件的运作,却常会使系统的软件无法正常运行,单片机应用的一个突出问题,便是单片机运行过程中经常出现的程序跑飞现象。

在单片机系统中,因为干扰的原因,在非预期的情况下,使得程序计数器PC 的值发生随机的变化,从而使得程序的流向指向不确定区域,这便是程序的跑飞。程序跑飞后或者会使指令的地址码和操作码发生改变,PC 把操作数当作指令来执行;或者PC值指向一条不合逻辑关系的指令甚或是非程序区,运行结果常常会使单片机进入死循环———便是大家常说的“死机”。为确保在无人当值的情况下,单片机“死机”后能自动恢复过来,通常采用软件陷阱,外部WDT电路,以及软件控制的WATCHDOG 等方法,使系统恢复正常(后两种俗称“看门狗”),限于篇幅不做专门说明,这里主要向大家介绍用555 定时器软硬结合做看门狗的一种方法。

2、555定时器

一般情况下,看门狗主要是通过不断监视程序运行一个事件的时间是否超过预定的时间来判断程序是否进入了死循环,因此利用555 定时器可复位的触发功能外加延时电路可实现看门狗的功能。555定时器是一种多用途的单片集成电路,内部电路如图1 所示。

CO端是控制电压输入端,加控制电压可改变A1“-”端及A2“ +”端的参考电压,若不用,可通过一个小电容接地,以防旁路高频交流干扰;R 为定时器直接复位端,加低电平可将定时器直接置“0”,此时,OUT输出“0”,Q 为1”,V 导通,D 端对地通路;TH 为复位阀值输入端,当TH 电压超过2/3UDD(即A1 负端分压)时,A1 输出为“1”,OUT 输出“0”,同样,D 端对地通路;TR 为置位输入端,当TR电压低于1/3 UDD(即A2 正端分压)时,A2 输出“1”,定时器被置位,此时,OUT 输出“1”,Q 为“0”,V截止,D端对地断路。

3、看门狗电路及运行指令以INTEL公司的16 位单片机8096 为例,555定时器作为看门狗与单片机的接口电路可设计如图2 所示。

首先在单片机初始化时用指令“ORBPORT1,#01H”置P1.0 为“1”,则三极管T 导通,555 芯片的R 为“1”,TH、TR 端经R、C 充电,电位逐渐上升,当电位还低于1/3 UDD 时,OUT 输出“1”,D端对地断路,电容C 正常充电,(http://www.diangon.com/版权所有)一旦程序跑飞或进入死循环,在电位上升到高于2/3 UDD时仍没有“喂狗”,则OUT输出变为“0”,经三极管T拉低单片机的RESET 脚,并使复位电容放电,这时
D 端对地短路,电容C 也通过Rf 放电,当TH、TR端电位放电到低于1/3 UDD(注意)时,OUT输出重新变为“1”,单片机进入复位状态。
“喂狗”是指复位看门狗,在本电路中只须运行以下指令即可。
ANDB PORT1,#0FEH ;使P1.0 为“0”
SKIP ;空操作,用于延时
SKIP ;以使TR电压降到1/3 UDD为宜
ORB PORT1,#01H ;使P1.0 为“1”
当P1.0 被置为“0”时,555 定时器的R 端为“0”,三极管T 截止。R 端为“0”则555 芯片被复位,OUT 输出为“0”,同时D 端对地短路,电容C放电为重新延时做准备,但因为三极管的截止,此时OUT 输出虽然也为“0”却并不影响单片机的RESET脚,单片机正常工作,从而区分开了“喂狗”与系统故障时看门狗发生作用的不同之处。

4、需要注意的问题

这里仍然有一个问题需要注意,那就是555定时器的正常工作与否完全依赖于单片机P1.0的状态,但在某些干扰比较严重的情况下,单片机的误操作是有可能改变P1.0 的预置状态的,若单片机在进入死循环之前,P1.0 被误置为了“0”,看门狗始终处于“被喂”的状态,那这个电路便就无法再发挥作用了,对这种情况我们可用软件冗余的方法来应对,就是在程序的关键地方多次插写看门狗的激活指令:
NOP
ORB PORT1,#01H

值得提醒一下的是这里“NOP”指令的作用不容忽视,可使跑飞的程序纳入正轨,不致冲散后面的关键指令。不过尽管如此软件冗余的应用也还是有一个前提的,那就是跑飞的程序必须落在程序区,冗余的指令得到执行方可生效,若跑飞的程序落在了非程序区,仅凭指令冗余技术便不可靠了,这时我们便还须借助其他抗干扰技术的支持,如软件陷阱、标志技术,本质可靠性程序的设计等,在此不再赘述,但这些都必须包含在一个可靠的程序内———毕竟,单片机系统来自干扰的影响是立体的,那么,我们的应对策略便也须是全方位的。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭