当前位置:首页 > 单片机 > 单片机
[导读] 数字滤波器作为语音与图象处理、模式识别、雷达信号处理、频谱分析等应用中最基本的处理部件,现已成为最常用的工具之一。它既能满足滤波器对幅度和相位特性的严格要求,又能避免模拟滤波器所无法克服的

数字滤波器作为语音与图象处理、模式识别、雷达信号处理、频谱分析等应用中最基本的处理部件,现已成为最常用的工具之一。它既能满足滤波器对幅度和相位特性的严格要求,又能避免模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题。而对于具有线性相位特性的滤波问题,设计时一般都选择FIR滤波器。 相对于窗函数法和频率设计法,在将理

数字滤波器作为语音与图象处理、模式识别、雷达信号处理、频谱分析等应用中最基本的处理部件,现已成为最常用的工具之一。它既能满足滤波器对幅度和相位特性的严格要求,又能避免模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题。而对于具有线性相位特性的滤波问题,设计时一般都选择FIR滤波器。

相对于窗函数法和频率设计法,在将理想频率响应和实际频率响应之间的加权逼近误差均匀地分散到滤波器的整个通带和阻带最小化和最大误差这个意义上来说,Chebyshev逼近法可以被视为最佳的设计准则。

1设计原理

1.1 FIR数字滤波器

对于长度为N、输入为x(n)、输出为y(n)的FIR滤波器,其输出函数可用差分方程表示为:

1.2 Chebyshev逼近法

(1)线性相位FIR滤波器的四种情况

根据单位样本响应的对称性或反对称性,以及滤波器长度的奇偶性,其线性相位FIR滤波器有以下四种情形:

情形1:单位样本响应具有对称性,即h(n)=h(N-1-n),且N为奇数;

情形2:单位样本响应具有对称性,即h(n)=h(N-1-n),且N为偶数;

情形3:单位样本响应具有反对称性,即h(n)=-h(N-1-n),且N为奇数;

情形4:单位样本响应具有反对称性,即h(n)=-h(N-1-h),且N为偶数。

如误差函数已知,则Chebyshev逼近只需确定滤波器参数{α(k)},然后使其逼近频带E(ω)上的最大绝对值最小化。即要找到下式的解:

该问题的解法已由Parks和MCClellan解决,称之为Remez交换算法。该算法是建立在交错定理的基础上的。图1所示是Remez算法的流程图。

(2)误差函数E(ω)

若定义实值理想频率响应Hd(ω)在通带内为1,在阻带内为0;同时定义加权函数W(ω)在通带内为δ2/δ1(δ1为通带波纹,δ1为阻带波纹),阻带内为1。则可将加权逼近误差E(ω)定义为:

(3)交错定理

2 FIR数字滤波器在ARM上的实现

Chebyshev逼近法主要利用Remez交换算法来实现,其设计流程图如图1所示。本文主要讨论怎样在ARM平台上实现该算法,从而设计FIR数字滤波器。其具体设计流程图如图2所示,步骤如下:

求出P(ωk)的值。事实上,也可以利用关于P(ω)的Lagrange差值公式来求解P(ω),具体公式为:

(5)误差E(ω)的计算

有了上面的基础,再利用公式(4)就可以求出E(ω),然后重复上述过程,直到找到符合要求的E(ω)为止,这样,就可以确定P(ω)的值。

(6)实值频率响应H(ω)的确定

通过P(ω)得到最佳解后,便可直接利用公式(3)来确定实值频率响应,而不必再去求解参数{αk}。

3结束语

本文在Chebyshev逼近法的基础上,提出了一种基于ARM平台的数字滤波器的软件实现方法。实验结果表明,利用此方法切实可行并能达到要求,并可初步用于实际的信号处理,为进一步实用化打下良好的基础。

数字滤波器作为语音与图象处理、模式识别、雷达信号处理、频谱分析等应用中最基本的处理部件,现已成为最常用的工具之一。它既能满足滤波器对幅度和相位特性的严格要求,又能避免模拟滤波器所无法克服的电压漂移、温度漂移和噪声等问题。而对于具有线性相位特性的滤波问题,设计时一般都选择FIR滤波器。

相对于窗函数法和频率设计法,在将理想频率响应和实际频率响应之间的加权逼近误差均匀地分散到滤波器的整个通带和阻带最小化和最大误差这个意义上来说,Chebyshev逼近法可以被视为最佳的设计准则。

1设计原理

1.1 FIR数字滤波器

对于长度为N、输入为x(n)、输出为y(n)的FIR滤波器,其输出函数可用差分方程表示为:

1.2 Chebyshev逼近法

(1)线性相位FIR滤波器的四种情况

根据单位样本响应的对称性或反对称性,以及滤波器长度的奇偶性,其线性相位FIR滤波器有以下四种情形:

情形1:单位样本响应具有对称性,即h(n)=h(N-1-n),且N为奇数;

情形2:单位样本响应具有对称性,即h(n)=h(N-1-n),且N为偶数;

情形3:单位样本响应具有反对称性,即h(n)=-h(N-1-n),且N为奇数;

情形4:单位样本响应具有反对称性,即h(n)=-h(N-1-h),且N为偶数。

(2)误差函数E(ω)

若定义实值理想频率响应Hd(ω)在通带内为1,在阻带内为0;同时定义加权函数W(ω)在通带内为δ2/δ1(δ1为通带波纹,δ1为阻带波纹),阻带内为1。则可将加权逼近误差E(ω)定义为:

如误差函数已知,则Chebyshev逼近只需确定滤波器参数{α(k)},然后使其逼近频带E(ω)上的最大绝对值最小化。即要找到下式的解:

该问题的解法已由Parks和MCClellan解决,称之为Remez交换算法。该算法是建立在交错定理的基础上的。图1所示是Remez算法的流程图。

(2)误差函数E(ω)

若定义实值理想频率响应Hd(ω)在通带内为1,在阻带内为0;同时定义加权函数W(ω)在通带内为δ2/δ1(δ1为通带波纹,δ1为阻带波纹),阻带内为1。则可将加权逼近误差E(ω)定义为:

(3)交错定理

2 FIR数字滤波器在ARM上的实现

Chebyshev逼近法主要利用Remez交换算法来实现,其设计流程图如图1所示。本文主要讨论怎样在ARM平台上实现该算法,从而设计FIR数字滤波器。其具体设计流程图如图2所示,步骤如下:

求出P(ωk)的值。事实上,也可以利用关于P(ω)的Lagrange差值公式来求解P(ω),具体公式为:

(5)误差E(ω)的计算

有了上面的基础,再利用公式(4)就可以求出E(ω),然后重复上述过程,直到找到符合要求的E(ω)为止,这样,就可以确定P(ω)的值。

(6)实值频率响应H(ω)的确定

通过P(ω)得到最佳解后,便可直接利用公式(3)来确定实值频率响应,而不必再去求解参数{αk}。

3结束语

本文在Chebyshev逼近法的基础上,提出了一种基于ARM平台的数字滤波器的软件实现方法。实验结果表明,利用此方法切实可行并能达到要求,并可初步用于实际的信号处理,为进一步实用化打下良好的基础。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

上海2025年8月26日 /美通社/ -- 在全球数字经济加速演进的时代浪潮中,海量数据资源正成为企业发展的双刃剑。超66%的企业面临"数据沉睡"危机——分散于供应链、财务、客户运营等数十个系统的业务...

关键字: AI 模型 软件 数据分析

加快开发进程;提升质量、安全性、性能与成本效益 利用耐世特在底盘领域的专业知识和线控技术产品组合 美国密西根州奥本山2025年8月11日 /美通社/ -- 耐...

关键字: MOTION 软件 运动控制 NI

从自然汲取,向未来创造 上海2025年8月8日 /美通社/ -- 2025 世界机器人大会将于8月8-12日在北京亦创国际会展中心拉开帷幕,Festo(A112展位­)将以"从自然汲取,向未来创造&q...

关键字: FESTO 机器人 BSP 软件

引言:穿越变革浪潮,迎接智能金融时代 上海2025年7月28日 /美通社/ -- 在全球科技变革的浪潮中,生成式AI正加速驱动各行业变革,金融行业尤为显著。在强监管与用户需求升级的双重压力,行业亟需重构服务模...

关键字: 软件 生成式AI 模型 数字化

宁波2025年7月28日 /美通社/ -- 日前,在第四届宁波市专利创新大赛的聚光灯下,中之杰智能的创新技术"一种基于电子周转箱的生产管理方法及系统"强势斩获专利优秀奖。这枚沉甸甸的奖章背后...

关键字: 软件 电子 智能工厂 BSP

杭州2025年7月28日 /美通社/ -- 近日,大华股份与北京北大软件工程股份有限公司(以下简称"北大软件")签署战略合作协议。双方将重点围绕长江禁渔等领域,发挥各自在产品、技术、平台等方面的经验和...

关键字: 软件 数字化

成都 2025年7月16日 /美通社/ -- 由立嘉会议展览有限公司主办的"2025第四届成渝地区装备制造业博览会"将于9月11日至13日在成都世纪城新国际会展中心盛大举办。本届博览会以&...

关键字: BSP 软件 供应链 智能制造

上海 2025年7月14日 /美通社/ -- 近日,微创软件与全球领先的工业级绿色智能系统解决方案提供商——上海电气集团股份有限公司旗下直属子公司上海电气数字科技有限公司,以下简称"电气数科"宣布深...

关键字: 电气 软件 数字化 BSP

全新的集成解决方案确保企业以安全、负责任的方式应用 AI智能体及其他生成式AI技术。 借助以上工具,企业可以对智能体执行"红队测试"和审计,并检测"影子智能体"...

关键字: IBM 软件 智能体 AI

从传统机械制造迈向数字化、智能化的转型之路,软件定义汽车(SDV)的出现,无疑成为这场变革的关键驱动力,预示着产业拐点即将来临。那么,支撑软件定义汽车发展的支柱究竟是什么呢?

关键字: 软件 传感器 智能化
关闭