当前位置:首页 > 单片机 > 单片机
[导读] EMC的基本指令语法,其实也就57/58条,如何变化折腾,就看各位的修行造化了。但是,新手上路总容易进入一些误区,而老鸟们的一些技巧也值得借鉴。废话少说,言归正传,且看匠人娓娓道来……1.减法指令的

EMC的基本指令语法,其实也就57/58条,如何变化折腾,就看各位的修行造化了。
但是,新手上路总容易进入一些误区,而老鸟们的一些技巧也值得借鉴。
废话少说,言归正传,且看匠人娓娓道来……

1.减法指令的误区

之一:关于ACC

EMC的减法指令有三条,如下:
SUB A,R (R-A→A)
SUB R,A (R-A→R)
SUB A,K (K-A→A)
需要注意的是,不论A的位置在前面还是后面,A都是减数,不是被减数.

也就是說如果我們想計算A-2的值,如果寫成:
SUB A,@2
其實是執行2-A

解決方法如下:
ADD A,@256-2 或
ADD A,@254

之二:关于CY

一般来说,加/减法都会影响到进位标志CY.
在其它一些单片机指令系统中,当减法发生借位时,CY=1,未发生借位时CY=0.
如果你以为EMC的减法也是如此,哈哈,你就要吃药了!
原来,在EMC的指令系统中.当减法发生借位时,CY=0,未发生借位时CY=1.
如果不注意这点,很容易在一些运算或判断程序中留下BUG

2.查表(散转)指令的误区

之一:关于"ADD R2,A"指令

在EMC153/156的指令系统中,没有TBL指令(这一点要切记),当要查表时只好用"ADD R2,A"(或MOV R2,A)来代替
但是使用"ADD R2,A"时要注意,这条指令只能改变PC指针的低8位(即256字节),高位其它位一律清零!
所以使用"ADD R2,A"时必须保证整个表格都在ROM的每一页的前256字节区间内.(153/156只有一页)

大表格的使用受到了限制,而且为了将表格"挤入"00H~FFH的ROM空间,程序的结构受到破坏.

之二:关于"TBL"指令

刚才说道,"ADD R2,A"指令使用的诸多不爽之处.
为此,EMC在447/458及后续的芯片的指令系统中,增加了一条新指令----就是TBL指令.
TBL是查表指令.号称可以放在程序的任何位置.
但是且慢----
TBL指令的使用也要注意如下:
首先,表格不能跨页(每1024字节为一页(PAGE))
其次,表格也不能跨"段"

何为"段"?----"段"是匠人自定义的一个概念:将每一页分为4段,每一段256个字节(如:00H~FFH是一段,100H~1FFH又是一段)

也就是说,每一个查表程序,除了TBL本身占用了一个字节以外表格长度必须<=255字节.而且整个查表程序必须在同一"段"内

这个问题真是一个大大的陷阱!
有时明明你的程序都已经调试好了,无意间调整了程序模块间的顺序或增加/减少了几条指令后,程序就不正常了.
嘿嘿,检查你的LST文件吧,八成是TBL在做怪!

另外,TBL还是没有解决大表格的查表问题,(只好象切豆腐一样,将大表格切成一个个小于255字节的小表格去查了)

3.关于“MOV R,R”指令

这是一条很奇特的指令,首先,阁下不要误认这条指令,以为它是将一个寄存器的数据送到另一个寄存器中去。匠人开始接触EMC 8bitIC时,就曾经“中招”!后经过高手指点,方得解脱——我佛慈悲,呕米脱佛!

看清楚了:"MOV R,R" 中的两个R是同一个寄存器,而它的动作是将寄存器的内容送到本身。

如果你认为这是无意义的动作,那就大错特错了。

按匠人的经验,这条指令至少有两个用处:


用处之一:判零

此指令的用意在于它能影响Zero Flag,辨别寄存器的内容是否为零。

如果要辨别某一个寄存器的值是否为零,一般我们会用
MOV A,R
JBS STTS,Z ; R3,Zero Flag
这两个指令,但是这会影响ACC原先的内容。若不要使用ACC,可能写成
INC R
DEC R
JBS STTS,Z
这会用到三个指令。若使用MOV R,R的指令,不仅可达成相同功能,也可减少指令数目,可说是一举两得。
MOV R,R
JBS STTS,Z


用处之二:将I/O口的外部电平状态存入锁存器

说到这里,要先介绍一下EMC的IO口特性了。
EMC的IO口一般都是三态,可设置为 高阻(输入);或输出状态
当IO口设置为输入状态时,只能“读”,不能“写”,CPU通过IO口直接“读”外部电平,如果这时发生“写”动作,则数据并不会输出,而是被存放到一个锁存器中,待到IO口变成输出状态时,再将锁存器中的数据送到IO口上。
——注意:在这里,源寄存器和目的寄存器虽然地址相同,但实质不是一回事了。(相当于一个门牌住着两户人家)

假如有这么一条指令:MOV R6,R6
分析:先将R6口的外部电平状态读入,再送到R6的锁存器里。

比如:R6口作电平翻转唤醒功能时,必须先将其外部电平保存到锁存器中
MOV R6,R6
然后开启R6口电平翻转唤醒功能,当R6口状态与锁存器中发生变化时,即可触发相应中断。
(R6的相应口必须设置为输入状态)

再次提醒,“ MOV R,R”指令 不能用作两个寄存器间送数用,如果要在两个寄存器间送数,一定要通过中介公司——ACC。

如果想减轻写程序的劳累,那就把下面这段宏插入到你的程序中去:
MOV MACRO REG1,REG2
MOV A,REG2
MOV REG1,A
ENDM
这样,当你写“MOV REG1,REG2”时,系统会自动帮你转化成两条指令:
MOV A,REG2
MOV REG1,A


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭