当前位置:首页 > 单片机 > 单片机
[导读] 今天来说一说,GPIO,对于我这个新手来说,GPIO就好比我在学习开车之前得学会如何开门一样,由此可以看出这对于我学习STM32 的重要性,好废话不多说,先总结一下STM32F103ZE的开发板里总共有7组IO口,每

今天来说一说,GPIO,对于我这个新手来说,GPIO就好比我在学习开车之前得学会如何开门一样,由此可以看出这对于我学习STM32 的重要性,好废话不多说,先总结一下STM32F103ZE的开发板里总共有7组IO口,每组IO口有16个IO,即这块板子总共有112个IO口分别是GPIOA~GPIOG。

GPIO的工作模式主要有八种:4种输入方式,4种输出方式,分别为输入浮空,输入上拉,输入下拉,模拟输入;输出方式为开漏输出,开漏复用输出,推挽输出,推挽复用输出。对应的为:

(1)GPIO_Mode_AIN 模拟输入
(2)GPIO_Mode_IN_FLOATING 浮空输入
(3)GPIO_Mode_IPD 下拉输入
(4)GPIO_Mode_IPU 上拉输入
(5)GPIO_Mode_Out_OD 开漏输出
(6)GPIO_Mode_Out_PP 推挽输出
(7)GPIO_Mode_AF_OD 复用开漏输出
(8)GPIO_Mode_AF_PP 复用推挽输出

对于我们这类初学者来说很难理解什么叫做输入浮空,开漏,推挽等,我查看资料和观看别人的资料认为可以粗俗的理解为浮空就是浮在半空,可以被其他物体拉上或者拉下。开漏,就可以理解为一个NPN管集电极是开路的,可以接3.3V或者5V,推挽就是有推有拉电平都是确定的,不需要上拉和下拉。下面的图给出了GPIO的原理,第一个图(引自正点原子原理PPT)是讲述输入浮空时的走势图。

首先再解释一下推挽输出,根据资料显示:推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,故导通损耗小、效率高。

再者:开漏输出:输出端相当于三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。我的逻辑思维就是得知道这个东西在实际中是干啥的我才可以理解,所以我就查询资料得到下面的应用总结:

(1) 浮空输入_IN_FLOATING ——浮空输入,可以用于按键输入
(2)带上拉输入:IO内部上拉电阻输入
(3)带下拉输入:内部下拉电阻输入
(4) 模拟输入:主要应用于ADC模拟输入,或者低功耗下省电
(5)开漏输出:IO输出0接GND,IO输出1,悬空,需要外接上拉电阻,才能实现输出高电平。当输出为1时,IO口的状态由上拉电阻拉高电平,但由于是开漏输出模式,这样IO口也就可以由外部电路改变为低电平或不变。一般来说,开漏是用来连接不同电平的器件,匹配电平用的,因为开漏引脚不连接外部的上拉电阻时,只能输出低电平,如果需要同时具备输出高电平的功能,则需要接上拉电阻,很好的一个优点是通过改变上拉电源的电压,便可以改变传输电平。比如加上上拉电阻就可以提供TTL/CMOS 电平输出等。(上拉电阻的阻值决定了逻辑电平转换的沿的速度 。阻值越大,速度越低功耗越小,所以负载电阻的选择要兼顾功耗和速度。)
(6)推挽输出:IO输出0-接GND, IO输出1 -接VCC,读输入值是未知的
(7)复用功能的推挽输出:片内外设功能(I2C的SCL,SDA)
(8)复用功能的开漏输出:片内外设功能(TX1,MOSI,MISO.SCK.SS)

基于对GPIO的理解编写了第一个跑马灯的实验,运用寄存器和库函数分别实现了一遍:

跑马灯的思路都是先初始化IO时钟,再初始化IO口,最后设置IO输出的高低电平。

寄存器版本的跑马灯代码如下:

这是在MDK5上建立的一个led.c的初始化led的函数。

#include "stm32f10x.h"
#include "led.h"
//three steps:
//1,enable IO time
//2,enable IO
//3,operate IO
void __Led_Init_()
{
//1,enable IO time
RCC->APB2ENR|=1<<3;//不影响其他的情况下用,这是第三位为B,led的硬件连接为PB5和PE5
RCC->APB2ENR|=1<<6;

//2,enable IO,由于是第五位IO口属于低配置调用低配置寄存器
GPIOB->CRL&=0xFF0FFFFF;
GPIOB->CRL|=0xFF3FFFFF;
GPIOB->ODR|=1<<5;

GPIOE->CRL&=0xFF0FFFFF;
GPIOE->CRL|=0xFF3FFFFF;
GPIOE->ODR|=1<<5;
}
头文件代码如下:主要就是预编译申明

#ifndef __LED_H
#define __LED_H


void __Led_Init_(void);


#endif

主函数代码如下:

#include "led.h"
#include "stm32f10x.h"
#include "delay.h"
int main(void)
{
delay_init();
__Led_Init_();
while(1)
{

GPIOB->ODR|=1<<5;
GPIOB->ODR&=~(1<<5);
delay_ms(300);
GPIOB->ODR|=1<<5;



GPIOE->ODR|=1<<5;
GPIOE->ODR&=~(1<<5);
delay_ms(300);
GPIOE->ODR|=1<<5;

}
// while(1){
// GPIOB->ODR|=1<<5;
// GPIOE->ODR|=1<<5;
// delay_ms(500);
//
// GPIOB->ODR=~(1<<5);
//
// GPIOE->ODR=~(1<<5);
// delay_ms(500);
// }
}



下面的为基于库函数版本的:

#include "stm32f10x_rcc.h"
#include "led.h"


void _led_init(void)
{
//跑马灯实验三步走:
//一、先使能时钟;
//二、gpio初始化
//三、控制led灯
GPIO_InitTypeDef GPIO_InitST;
//第一步:使能时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);
//second step:GPIO INIT



GPIO_InitST.GPIO_Mode=GPIO_Mode_Out_PP;//推挽输出
GPIO_InitST.GPIO_Pin=GPIO_Pin_5;//第五个口,PE5、PB5
GPIO_InitST.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOB,&GPIO_InitST);//PB5
GPIO_SetBits(GPIOB,GPIO_Pin_5);//set 1

GPIO_InitST.GPIO_Mode=GPIO_Mode_Out_PP;//推挽输出
GPIO_InitST.GPIO_Pin=GPIO_Pin_5;//第五个口,PE5、PB5
GPIO_InitST.GPIO_Speed=GPIO_Speed_50MHz;
GPIO_Init(GPIOE,&GPIO_InitST);//PE5
GPIO_SetBits(GPIOE,GPIO_Pin_5);//set high
}
基于库函数版本的头文件
#ifndef __LED_init_//没有定义就执行下面代码
#define __LED_init_
void _led_init(void);
#endif

基于库函数的主函数:

#include "led.h"
#include "delay.h"


int main(void)
{
_led_init();
delay_init();
while(1)
{
GPIO_ResetBits(GPIOB,GPIO_Pin_5);//set 0
delay_ms(300);
GPIO_SetBits(GPIOB,GPIO_Pin_5);//set 1
delay_ms(300);

GPIO_ResetBits(GPIOE,GPIO_Pin_5);//set 0
delay_ms(300);
GPIO_SetBits(GPIOE,GPIO_Pin_5);//set 1
delay_ms(300);
}
}

当然我们还可以根据位操作来直接进行,或者定义一些宏定义可以把主函数的代码简化,综合上述库函数和寄存器版本的代码,分析可以看出,对于初学者最好能两种都学习,因为库函数也是基于寄存器进行操作的,只有理解了底层的寄存器,我们以后自己编程才可以知道如何修改或者编写更加复杂的代码。

对于初学者,上述总结可能会有很多不对的希望大家可以指出谢谢。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭