当前位置:首页 > 单片机 > 单片机
[导读]本章讨论以下内容: ●绝对地址访问●C与汇编的接口 ●C51软件包中的通用文件 ●段名转换与程序优化第一节 绝对地址访问C51提供了三种访问绝对地址的方法:1. 绝对宏:在程序中,用“#include”即可使用其中定义的宏

本章讨论以下内容:

●绝对地址访问

●C与汇编的接口

●C51软件包中的通用文件

●段名转换与程序优化


第一节 绝对地址访问

C51提供了三种访问绝对地址的方法:

1. 绝对宏:

在程序中,用“#include”即可使用其中定义的宏来访问绝对地址,包括:

CBYTE、XBYTE、PWORD、DBYTE、CWORD、XWORD、PBYTE、DWORD

具体使用可看一看absacc.h便知

例如:

rval=CBYTE[0x0002];指向程序存贮器的0002h地址

rval=XWORD [0x0002];指向外RAM的0004h地址

2. _at_关键字

直接在数据定义后加上_at_ const即可,但是注意:

(1)绝对变量不能被初使化;

(2)bit型函数及变量不能用_at_指定。

例如:

idata struct link list _at_ 0x40;指定list结构从40h开始。

xdata char text[25b] _at_0xE000;指定text数组从0E000H开始

提示:如果外部绝对变量是I/O端口等可自行变化数据,需要使用volatile关键字进行描述,请参考absacc.h。

3. 连接定位控制

此法是利用连接控制指令code xdata pdata data bdata对“段”地址进行,如要指定某具体变量地址,则很有局限性,不作详细讨论。

第二节 Keil C51与汇编的接口

1. 模块内接口

方法是用#pragma语句具体结构是:

#pragma asm

汇编行

#pragma endasm

这种方法实质是通过asm与ndasm告诉C51编译器中间行不用编译为汇编行,因而在编译控制指令中有SRC以控制将这些不用编译的行存入其中。

2. 模块间接口

C模块与汇编模块的接口较简单,分别用C51与A51对源文件进行编译,然后用L51将obj文件连接即可,关键问题在于C函数与汇编函数之间的参数传递问题,C51中有两种参数传递方法。

(1) 通过寄存器传递函数参数

最多只能有3个参数通过寄存器传递,规律如下表:

参数数目 Char Int long,float 一般指针

1 R7 R6 & R7 R4~R7 R1~R3

2 R5 R4 & R5 R4~R7 R1~R3

3 R3 R2 & R3 R1~R3

(2) 通过固定存储区传递(fixed memory)

这种方法将bit型参数传给一个存储段中:

?function_name?BIT

将其它类型参数均传给下面的段:?function_name?BYTE,且按照预选顺序存放。

至于这个固定存储区本身在何处,则由存储模式默认。

(3) 函数的返回值

函数返回值一律放于寄存器中,有如下规律:

Return type Registev 说明

Bit 标志位 由具体标志位返回

char/unsigned char

1_byte指针 R7 单字节由R7返回

int/unsigned int

2_byte指针 R6 & R7 双字节由R6和R7返回,MSB在R6

long&unsigned long R4~R7 MSB在R4, LSB在R7

Float R4~R7 32Bit IEEE格式

一般指针 R1~R3 存储类型在R3 高位R2 低R1

(4) SRC控制

该控制指令将C文件编译生成汇编文件(.SRC),该汇编文件可改名后,生成汇编.ASM文件,再用A51进行编译。

第三节 Keil C51软件包中的通用文件

在C51LiB目录下有几个C源文件,这几个C源文件有非常重要的作用,对它们稍事修改,就可以用在自己的专用系统中。

1. 动态内存分配

init_mem.C:此文件是初始化动态内存区的程序源代码。它可以指定动态内存的位置及大小,只有使用了init_mem( )才可以调回其它函数,诸如malloc calloc,realloc等。

calloc.c:此文件是给数组分配内存的源代码,它可以指定单位数据类型及该单元数目。

malloc.c:此文件是malloc的源代码,分配一段固定大小的内存。

realloc.c:此文件是realloc.c源代码,其功能是调整当前分配动态内存的大小。

2. C51启动文件STARTUP.A51

启动文件STARTUP.A51中包含目标板启动代码,可在每个project中加入这个文件,只要复位,则该文件立即执行,其功能包括:

●定义内部RAM大小、外部RAM大小、可重入堆栈位置

●清除内部、外部或者以此页为单元的外部存储器

●按存储模式初使化重入堆栈及堆栈指针

●初始化8051硬件堆栈指针

●向main( )函数交权

开发人员可修改以下数据从而对系统初始化

常数名 意义

IDATALEN 待清内部RAM长度

XDATA START 指定待清外部RAM起始地址

XDATALEN 待清外部RAM长度

IBPSTACK 是否小模式重入堆栈指针需初始化标志,1为需要。缺省为0

IBPSTACKTOP 指定小模式重入堆栈顶部地址

XBPSTACK 是否大模式重入堆栈指针需初始化标志,缺省为0

XBPSTACKTOP 指定大模式重入堆栈顶部地址

PBPSTACK 是否Compact重入堆栈指针,需初始化标志,缺省为0

PBPSTACKTOP 指定Compact模式重入堆栈顶部地址

PPAGEENABLE P2初始化允许开关

PPAGE 指定P2值

PDATASTART 待清外部RAM页首址

PDATALEN 待清外部RAM页长度

提示:如果要初始化P2作为紧凑模式高端地址,必须:PPAGEENAGLE=1,PPAGE为P2值,例如指定某页1000H-10FFH,则PPAGE=10H,而且连接时必须如下:

L51 PDATA(1080H),其中1080H是1000H-10FFH中的任一个值。

以下是STARTUP.A51代码片断,红色是经常可能需要修改的地方:

;------------------------------------------------------------------------------

; This file is part of the C51 Compiler package

; Copyright KEIL ELEKTRONIK GmbH 1990

;------------------------------------------------------------------------------

; STARTUP.A51: This code is executed after processor reset.

;

; To translate this file use A51 with the following invocation:

;

; A51 STARTUP.A51

;

; To link the modified STARTUP.OBJ file to your application use the following

; L51 invocation:

;

; L51, STARTUP.OBJ

;

;------------------------------------------------------------------------------

;

; User-defined Power-On Initialization of Memory

;

; With the following EQU statements the initialization of memory

; at processor reset can be defined:

;

; ; the absolute start-address of IDATA memory is always 0

IDATALEN EQU 80H ; the length of IDATA memory in bytes.

;

XDATASTART EQU 0H ; the absolute start-address of XDATA memory

XDATALEN EQU 0H ; the length of XDATA memory in bytes.

;

PDATASTART EQU 0H ; the absolute start-address of PDATA memory

PDATALEN EQU 0H ; the length of PDATA memory in bytes.

;

; Notes: The IDATA space overlaps physically the DATA and BIT areas of the

; 8051 CPU. At minimum the memory space occupied from the C51

; run-time routines must be set to zero.

;------------------------------------------------------------------------------

;

; Reentrant Stack Initilization

;

; The following EQU statements define the stack pointer for reentrant

; functions and initialized it:

;

; Stack Space for reentrant functions in the SMALL model.

IBPSTACK EQU 0 ; set to 1 if small reentrant is used.

IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.

;

; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU 0 ; set to 1 if large reentrant is used.

XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.

;

; Stack Space for reentrant functions in the COMPACT model.

PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.

PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.

;

;------------------------------------------------------------------------------

;

; Page Definition for Using the Compact Model with 64 KByte xdata RAM

;

; The following EQU statements define the xdata page used for pdata

; variables. The EQU PPAGE must conform with the PPAGE control used

; in the linker invocation.

;

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.

PPAGE EQU 0 ; define PPAGE number.

;

;------------------------------------------------------------------------------

3. 标准输入输出文件

putchar.c

putchar.c是一个低级字符输出子程,开发人员可修改后应用到自己的硬件系统上,例如向C

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭