当前位置:首页 > 单片机 > 单片机
[导读]#include "pbdata.h"uint8_t TxBuffer1[] = "USART Interrupt Example: This isUSART1 DEMO";uint8_t RxBuffer1[],rec_f,tx_flag;volatile uint8_t TxCounter1 = 0x00;volatile uint8_t RxCounter1 = 0x00;uint32_t

#include "pbdata.h"

uint8_t TxBuffer1[] = "USART Interrupt Example: This isUSART1 DEMO";

uint8_t RxBuffer1[],rec_f,tx_flag;

volatile uint8_t TxCounter1 = 0x00;

volatile uint8_t RxCounter1 = 0x00;

uint32_t Rec_Len;

int main(void)

{

u8 a=0;

RCC_Configuration();

NVIC_Configuration();

GPIO_Configuration();

USART_Config(USART1);

while(1)

{

if(rec_f==1)

{

rec_f=0;

USART_OUT(USART1,&TxBuffer1[0]);

if(a==0){GPIO_SetBits(GPIOA, GPIO_Pin_2); a=1;}

else{GPIO_ResetBits(GPIOA, GPIO_Pin_2);a=0; }

}

}

}

这是主函数部分,在主函数中只有几个函数的初始化,还有就是定义的数组和标志位。

在一般的串口历程中大家会看到的就是定义一个缓冲区,将接收到的串口数据通过串口中断存放到缓冲区中然后在发送到串口中,但是在接收字符串的时候就要用到逐位发送,新手自己有些不了程序,所以只能一直处于蒙着的状态。其实个人感觉整点原子的程序写的真的挺好的,建议新手开始学习的时候看他的程序,有的人就是不喜欢他写程序的风格,这个因人而异,在这里只是建议一下。原子的串口就给出了字符串就收的历程,但是用这个历程的时候结尾必须要是0d 0a结尾的也就是空格和回车。

在这了给出一个自己定义的头和尾的串口程序。

串口接收字符串的原理和接收单字符的差不多,只是在接收的时候定义的缓冲区是一个数组,将接受到的数据存放到数组中,在从数组中读出想要的十六进制数在主程序中调用。

以上的主函数中定义个几个数组

uint8_t TxBuffer1[] = "USART Interrupt Example: This isUSART1 DEMO";

uint8_t RxBuffer1[],rec_f,tx_flag;

volatile uint8_t TxCounter1 = 0x00;

volatile uint8_t RxCounter1 = 0x00;

第一个是发送的缓冲区数组,将接受的数据放到这里发送到串口。

第二个是接收缓冲区的数组,将接受回来的数据放到这里面。

下面两个是定义的变量,因为接收的时候是逐个位就收的所以接收以为就要将地址加一位存放到数组中,否则就会出现发送的数据直接受到一位的现象,应为由于地址没有加1所以导致数据被覆盖掉了。

在主函数中有几个调用的函数,就是串口初始化的函数,

RCC_Configuration();

NVIC_Configuration();

GPIO_Configuration();

USART_Config(USART1);

首先是 RCC_Configuration();函数

由于是我自己写的模板所以喜欢讲所有的时钟都放到一个函数中。这个根据个人喜好而定。

voidRCC_Configuration(void)

{

SystemInit();

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);

RCC_APB2PeriphClockCmd( RCC_APB2Periph_USART1|RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB

|RCC_APB2Periph_GPIOD|RCC_APB2Periph_AFIO , ENABLE);

}

NVIC_Configuration();中断向量配置,如果没有需要串口抢占的直接默认优先级就好

voidNVIC_Configuration(void)

{

NVIC_InitTypeDef NVIC_InitStructure;

/* Configure the NVIC Preemption Priority Bits*/

/* Configure one bit for preemption priority*/ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_0);

NVIC_InitStructure.NVIC_IRQChannel= USART1_IRQn;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelSubPriority= 0;

NVIC_InitStructure.NVIC_IRQChannelCmd =ENABLE;

NVIC_Init(&NVIC_InitStructure);

}

GPIO_Configuration();这个是一个led灯的配置,功能是发送数据时单片机成功接收后会出现电平反转,也就是亮灭变化。同时串口的IO口初始化也在这里。

voidGPIO_Configuration(void)

{

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;

GPIO_InitStructure.GPIO_Mode =GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed =GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

GPIO_InitStructure.GPIO_Mode =GPIO_Mode_AF_PP;

GPIO_Init(GPIOA, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;

GPIO_InitStructure.GPIO_Mode =GPIO_Mode_IN_FLOATING;

GPIO_Init(GPIOA, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;

GPIO_InitStructure.GPIO_Speed =GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_Init(GPIOD, &GPIO_InitStructure);

GPIO_ResetBits(GPIOD, GPIO_Pin_13);

}

USART_Config(USART1); 最后就是串口配置了。

voidUSART_Config(USART_TypeDef* USARTx)

{

USART_InitStructure.USART_BaudRate = 9600;

USART_InitStructure.USART_WordLength =USART_WordLength_8b;

USART_InitStructure.USART_StopBits =USART_StopBits_1;

USART_InitStructure.USART_Parity =USART_Parity_No;

USART_InitStructure.USART_HardwareFlowControl= USART_HardwareFlowControl_None;

USART_InitStructure.USART_Mode =USART_Mode_Rx | USART_Mode_Tx;

/* Configure USART1 */

USART_Init(USARTx, &USART_InitStructure);

/* Enable USART1 Receive and Transmitinterrupts */

USART_ITConfig(USART1, USART_IT_RXNE,ENABLE);

USART_ITConfig(USART1, USART_IT_TXE, ENABLE);

/* Enable the USART1 */

USART_Cmd(USART1, ENABLE);

}

这些都是固定的东西按照手册配置就行,不过多废话了,主要的部分是在中断函数中

extern uint8_tTxBuffer1[];

extern uint8_tTxBuffer2[];

extern uint8_tRxBuffer1[];

extern uint8_tRxBuffer2[];

extern volatileuint8_t RxCounter1;

extern volatileuint8_t RxCounter2;

extern uint8_trec_f,tx_flag;

以上用到的是extern的定义,目的是在外部函数中可以调用。下面是串口函数的编写。

我直接将注释打到语句的后面,在最后又源程序,可下载调试。

voidUSART1_IRQHandler(void)

{

unsigned int i;//定义一个变量,在后面以为用

if(USART_GetITStatus(U

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭