当前位置:首页 > 单片机 > 单片机
[导读]//////////////////////////////////////////////////////////////////////////////////// PIC16F877 + DYP-ME007 + LCD03 example// Written October 2008 , using HITECH PIC16 compiler//// Note - assumes a 20M

//////////////////////////////////////////////////////////////////////////////////// PIC16F877 + DYP-ME007 + LCD03 example// Written October 2008 , using HITECH PIC16 compiler//// Note - assumes a 20MHz crystal, which is 5MHz timer clock// A 1:4 prescaler is used to give a 1.25MHz timer count (0.8uS per tick)//// This code is Freeware - Use it for any purpose you like./////////////////////////////////////////////////////////////////////////////////#include #include __CONFIG(0x3b32);#define trig RB0#define echo RB1void clrscn(void); // prototypesvoid cursor(char pos);void print(char *p);void setup(void);unsigned int get_srf04(void);char s[21]; // buffer used to hold text to printvoid main(void){unsigned int range;setup(); // sets up the PIC16F877 I2C portclrscn(); // clears the LCD03 displycursor(2); // sets cursor to 1st row of LCD03sprintf(s,"SRF04 Ranger Test"); // text, printed into our bufferprint(s); // send it to the LCD03while(1) { // loop foreverrange = get_srf04(); // get range from srf04 (round trip flight time in 0.8uS units)cursor(24); // sets cursor to 2nd row of LCD03sprintf(s,"Range = ?m ", range/72); // convert to cmprint(s); // send it to the LCD03cursor(44); // sets cursor to 3rd row of LCD03sprintf(s,"Range = %dinch ", range/185); // convert to inchesprint(s); // send it to the LCD03TMR1H = 0; // 52mS delay - this is so that the SRF04 ranging is not too rapidTMR1L = 0; // and the previous pulse has faded away before we start the next oneT1CON = 0x21; // 1:4 prescale and runningTMR1IF = 0;while(!TMR1IF); // wait for delay timeTMR1ON = 0; // stop timer}}unsigned int get_srf04(void){TMR1H = 0xff; // prepare timer for 10uS pulseTMR1L = -14;T1CON = 0x21; // 1:4 prescale and runningTMR1IF = 0;trig = 1; // start trigger pulsewhile(!TMR1IF); // wait 10uStrig = 0; // end trigger pulseTMR1ON = 0; // stop timerTMR1H = 0; // prepare timer to measure echo pulseTMR1L = 0;T1CON = 0x20; // 1:4 prescale but not running yetTMR1IF = 0;while(!echo && !TMR1IF); // wait for echo pulse to start (go high)TMR1ON = 1; // start timer to measure pulsewhile(echo && !TMR1IF); // wait for echo pulse to stop (go low)TMR1ON = 0; // stop timerreturn (TMR1H<<8)+TMR1L; // TMR1H:TMR1L contains flight time of the pulse in 0.8uS units}void clrscn(void){SEN = 1; // send start bitwhile(SEN); // and wait for it to clearSSPIF = 0;SSPBUF = 0xc6; // LCD02 I2C addresswhile(!SSPIF); // wait for interruptSSPIF = 0; // then clear it.SSPBUF = 0; // address of register to write towhile(!SSPIF); //SSPIF = 0; //SSPBUF = 12; // clear screenwhile(!SSPIF); //SSPIF = 0; //SSPBUF = 4; // cursor offwhile(!SSPIF); //SSPIF = 0; //PEN = 1; // send stop bitwhile(PEN); //}void cursor(char pos){SEN = 1; // send start bitwhile(SEN); // and wait for it to clearSSPIF = 0;SSPBUF = 0xc6; // LCD02 I2C addresswhile(!SSPIF); // wait for interruptSSPIF = 0; // then clear it.SSPBUF = 0; // address of register to write towhile(!SSPIF); //SSPIF = 0; //SSPBUF = 2; // set cursorwhile(!SSPIF); //SSPIF = 0; //SSPBUF = pos; // while(!SSPIF); //SSPIF = 0; //PEN = 1; // send stop bitwhile(PEN); //}void print(char *p){SEN = 1; // send start bitwhile(SEN); // and wait for it to clearSSPIF = 0;SSPBUF = 0xc6; // LCD02 I2C addresswhile(!SSPIF); // wait for interruptSSPIF = 0; // then clear it.SSPBUF = 0; // address of register to write towhile(!SSPIF); //SSPIF = 0; //while(*p) {SSPBUF = *p++; // write the datawhile(!SSPIF); //SSPIF = 0; //}PEN = 1; // send stop bitwhile(PEN); //}void setup(void){unsigned long x;TRISB = 0xfe; // RB0 (trig) is outputPORTB = 0xfe; // and starts lowTRISC = 0xff;PORTC = 0xff;SSPSTAT = 0x80;SSPCON = 0x38;SSPCON2 = 0x00;SSPADD = 50; // SCL = 91khz with 20Mhz Oscfor(x=0; x<300000L; x++); // wait for LCD03 to initialise}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭