当前位置:首页 > 单片机 > 单片机
[导读]【例子】通过奇偶校验的方式实现数据传输与控制,例如控制LED灯、蜂鸣器、发送数据到上位机。 由于是数据传输与控制,需要定制一个结构体、共用体方便数据识别,同时增强可读性。从数据帧格式定义中可以定义为“PKT_

【例子】通过奇偶校验的方式实现数据传输与控制,例如控制LED灯、蜂鸣器、发送数据到上位机。

由于是数据传输与控制,需要定制一个结构体、共用体方便数据识别,同时增强可读性。从数据帧格式定义中可以定义为“PKT_PARITY_EX”类型。

识别数据请求什么操作可以通过以下手段来识别:识别数据头部1、数据头部2,操作码。

当完全接收数据完毕后通过校验该数据得出的校验值与该数据的尾部的校验值是否匹配。若匹配,则根据操作码的请求进行操作;若不匹配则丢弃当前数据帧,等待下一个数据帧的到来。

结构体定义:

/*使用结构体对数据包进行封装

*方便操作数据

*/

typedef struct _PKT_PARITY

{

UINT8 m_ucHead1; //首部1

UINT8 m_ucHead2; //首部2

UINT8 m_ucOptCode; //操作码

UINT8 m_ucDataLength; //数据长度

UINT8 m_szDataBuf[16]; //数据

UINT8 m_ucParity; //校验值为1个字节

}PKT_PARITY;

/*使用共用体再一次对数据包进行封装

*操作数据更加方便

*/

typedef union _PKT_PARITY_EX

{

PKT_PARITY r;

UINT8 p[32];

} PKT_PARITY_EX;

奇偶校验代码【偶校验】如下:

#include "stc.h"


/***************************************************
* 类型定义,方便代码移植
***************************************************/
typedef unsigned char UINT8;
typedef unsigned int UINT16;
typedef unsigned long UINT32;

typedef char INT8;
typedef int INT16;
typedef long INT32;
typedef bit BOOL;

/***************************************************
* 大量宏定义,便于代码移植和阅读
***************************************************/
//--------------------------------
//----头部----
#define DCMD_CTRL_HEAD1 0x10 //PC下传控制包头部1
#define DCMD_CTRL_HEAD2 0x01 //PC下传控制包头部2

//----命令码----
#define DCMD_NULL 0x00 //命令码:空操作
#define DCMD_CTRL_BELL 0x01 //命令码:控制蜂鸣器
#define DCMD_CTRL_LED 0x02 //命令码:控制LED
#define DCMD_REQ_DATA 0x03 //命令码:请求数据

//----数据----
#define DCTRL_BELL_ON 0x01 //蜂鸣器响
#define DCTRL_BELL_OFF 0x02 //蜂鸣器禁鸣
#define DCTRL_LED_ON 0x03 //LED亮
#define DCTRL_LED_OFF 0x04 //LED灭

//--------------------------------
//----头部----
#define UCMD_CTRL_HEAD1 0x20 //MCU上传控制包头部1
#define UCMD_CTRL_HEAD2 0x01 //MCU上传控制包头部2

//----命令码----
#define UCMD_NULL 0x00 //命令码:空操作
#define UCMD_REQ_DATA 0x01 //命令码:请求数据


#define CTRL_FRAME_LEN 0x04 //帧长度(不包含数据和校验值)
#define PARITY_LEN 0x01 //检验值长度
#define EN_UART() ES=1 //允许串口中断
#define NOT_EN_UART() ES=0 //禁止串口中断

#define BELL(x) {if((x))P0_6=1 ;else P0_6=0;} //蜂鸣器控制宏函数
#define LED(x) {if((x))P2=0x00;else P2=0xFF;}//LED控制宏函数

#define TRUE 1
#define FALSE 0

#define HIGH 1
#define LOW 0

#define ON 1
#define OFF 0

#define NULL (void *)0

/*使用结构体对数据包进行封装
*方便操作数据
*/
typedef struct _PKT_PARITY
{
UINT8 m_ucHead1; //首部1
UINT8 m_ucHead2; //首部2
UINT8 m_ucOptCode; //操作码
UINT8 m_ucDataLength; //数据长度
UINT8 m_szDataBuf[16]; //数据

UINT8 m_ucParity; //校验值为1个字节

}PKT_PARITY;

/*使用共用体再一次对数据包进行封装
*操作数据更加方便
*/
typedef union _PKT_PARITY_EX
{
PKT_PARITY r;
UINT8 p[32];
} PKT_PARITY_EX;


PKT_PARITY_EX PktParityEx; //定义数据包变量
BOOL bLedOn=FALSE; //定义是否点亮LED布尔变量
BOOL bBellOn=FALSE; //定义是否蜂鸣器响布尔变量
BOOL bReqData=FALSE; //定义是否请求数据布尔变量

/******************************************************
*函数名称:OddParity
*输 入:buf 要校验的数据; len 校验数据的长
*输 出:校验值
*功 能:偶校验
*******************************************************/
BOOL OddParity(UINT8 *buf, UINT8 len)
{
UINT8 i,j;
UINT8 data_temp;
BOOL bParity;

bParity = 1;

for(j = 0; j < len;j++)
{
data_temp = *(buf + j);

for(i = 0; i < 8; i++)
{

if((data_temp & 0x01) == 0x01)
{
bParity ^= 1;
}

data_temp = data_temp >> 1;
}
}

return bParity;
}
/*************************************************************
* 函数名称:BufClr
* 输 入:dest 缓冲区; size 缓冲区大小
* 输 出:无
* 说 明:清空缓冲区
**************************************************************/
BOOL BufCpy(UINT8 * dest,UINT8 * src,UINT32 size)
{
if(NULL ==dest || NULL==src ||NULL==size)
{
return FALSE;
}

do
{
*dest++ = *src++;

}while(--size!=0);

return TRUE;
}
/****************************************************
** 函数名称: UartInit
** 输 入: 无
** 输 出: 无
** 功能描述: 串口初始化
*****************************************************/
void UartInit(void)
{
SCON=0x40;
T2CON=0x34;
RCAP2L=0xD9;
RCAP2H=0xFF;
REN=1;
ES=1;
}
/****************************************************
** 函数名称: UARTSendByte
** 输 入: b 单个字节
** 输 出: 无
** 功能描述: 串口 发送单个字节
*****************************************************/
void UARTSendByte(UINT8 b)
{
SBUF=b;
while(TI==0);
TI=0;
}
/****************************************************
** 函数名称: UARTSendByte
** 输 入: b 单个字节
** 输 出: 无
** 功能描述: 串口 发送单个字节
*****************************************************/
void UartSendNBytes(UINT8 *buf,UINT8 len)
{
while(len--)
{
UARTSendByte(*buf++);
}
}
/****************************************************
** 函数名称: main
** 输 入: 无
** 输 出: 无
** 功能描述: 函数主题
*****************************************************/
void main(void)
{
UINT8 i=0;
UINT8 ucCheckSum=0;

UartInit();//串口初始化

EA=1; //开总中断

while(1)
{
if(bLedOn) //是否点亮Led
{
LED(ON);
}
else
{
LED(OFF);
}


if(bBellOn)//是否响蜂鸣器
{
BELL(ON);
}
else
{
BELL(OFF);
}

if(bReqData)//是否请求数据
{
bReqData=FALSE;

NOT_EN_UART(); //禁止串口中断

PktParityEx.r.m_ucHead1=UCMD_CTRL_HEAD1;//MCU上传数据帧头部1
PktParityEx.r.m_ucHead2=UCMD_CTRL_HEAD2;//MCU上传数据帧头部2
PktParityEx.r.m_ucOptCode=UCMD_REQ_DATA;//MCU上传数据帧命令码

PktParityEx.r.m_ucParity=OddParity(PktParityEx.p,
CTRL_FRAME_LEN+
PktParityEx.r.m_ucDataLength);//计算校验值

/*
这样做的原因是因为有时写数据长度不一样,
导致PktParityEx.r.m_ucParity会出现为0的情况
所以使用BufCpy将校验值复制到相应的位置
*/

BufCpy(&PktParityEx.p[CTRL_FRAME_LEN+PktParityEx.r.m_ucDataLength],
&PktParityEx.r.m_ucParity,
PARITY_LEN);

UartSendNBytes(PktParityEx.p,
CTRL_FRAME_LEN+
PktParityEx.r.m_ucDataLength+
PARITY_LEN);//发送数据

EN_UART();//允许串口中断

}
}
}
/****************************************************
** 函数名称: UartIRQ
** 输 入: 无
** 输 出: 无
** 功能描述: 串口中断服务函数
*****************************************************/
void UartIRQ(void)interrupt 4
{
static UINT8 uccnt=0;
UINT8 uclen;
UINT8 ucParity;

if(RI) //是否接收到数据
{
RI=0;

PktParityEx.p[uccnt++]=SBUF;//获取单个字节

if(PktParityEx.r.m_ucHead1 == DCMD_CTRL_HEAD1)//是否有效的数据帧头部1
{
if(uccnt {
if(uccnt>=2 && PktParityEx.r.m_ucHead2!=DCMD_CTRL_HEAD2)//是否有效的数据帧头部2
{
uccnt=0;

return;
}

}
else
{

uclen=CTRL_FRAME_LEN+PktParityEx.r.m_ucDataLength;//获取数据帧有效长度(不包括校验值)

ucParity=OddParity(PktParityEx.p,uclen);//计算校验值

/*
这样做的原因是因为有时写数据长度不一样,
导致PktParityEx.r.m_ucParity会出现为0的情况
所以使用BufCpy将校验值复制到相应的位置
*/
BufCpy(&PktParityEx.r.m_ucParity,
&PktParityEx.p[uclen],
PARITY_LEN);

if(ucParity!=PktParityEx.r.m_ucParity)//校验值是否匹配
{
uccnt=0;

return;
}

switch(PktParityEx.r.m_ucOptCode)//从命令码中获取相对应的操作
{
case DCMD_CTRL_BELL://控制蜂鸣器命令码
{
if(DCTRL_BELL_ON==PktParityEx.r.m_szDataBuf[0])//数据部分含控制码
{
bBellOn=TRUE;
}
else
{
bBellOn=FALSE;
}
}
break;

case DCMD_CTRL_LED://控制LED命令码
{

if(DCTRL_LED_ON==PktParityEx.r.m_szDataBuf[0])//数据部分含控制码
{
bLedOn=TRUE;
}
else
{
bLedOn=FALSE;
}
}
break;

case DCMD_REQ_DATA://请求数据命令码
{
bReqData=TRUE;
}
break;

}

uccnt=0;

return;
}

}
else
{
uccnt=0;
}

}
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

这款全新的中端MCU系列为设计人员提供了更高水平的安全性和灵活性

关键字: 嵌入式 单片机

单片机是一种嵌入式系统,它是一块集成电路芯片,内部包含了处理器、存储器和输入输出接口等功能。

关键字: 单片机 编写程序 嵌入式

在现代电子技术的快速发展中,单片机以其高度的集成性、稳定性和可靠性,在工业自动化、智能家居、医疗设备、航空航天等诸多领域得到了广泛应用。S32单片机,作为其中的佼佼者,其引脚功能丰富多样,是实现与外部设备通信、控制、数据...

关键字: s32单片机引脚 单片机

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

该系列产品有助于嵌入式设计人员在更广泛的系统中轻松实现USB功能

关键字: 单片机 嵌入式设计 USB

单片机编程语言是程序员与微控制器进行交流的桥梁,它们构成了单片机系统的软件开发基石,决定着如何有效、高效地控制和管理单片机的各项资源。随着微控制器技术的不断发展,针对不同应用场景的需求,形成了丰富多样的编程语言体系。本文...

关键字: 单片机 微控制器

单片机,全称为“单片微型计算机”或“微控制器”(Microcontroller Unit,简称MCU),是一种高度集成化的电子器件,它是现代科技领域的关键组件,尤其在自动化控制、物联网、消费电子、汽车电子、工业控制等领域...

关键字: 单片机 MCU

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

在当前的科技浪潮中,单片机作为嵌入式系统的重要组成部分,正以其强大的功能和广泛的应用领域受到越来越多行业的青睐。在众多单片机中,W79E2051以其卓越的性能和稳定的工作特性,成为市场上的明星产品。本文将深入探讨W79E...

关键字: 单片机 w79e2051单片机

单片机,又称为微控制器或微处理器,是现代电子设备中的核心部件之一。它集成了中央处理器、存储器、输入输出接口等电路,通过外部信号引脚与外部设备进行通信,实现对设备的控制和管理。本文将详细介绍单片机的外部信号引脚名称及其功能...

关键字: 单片机 微控制器 中央处理器
关闭
关闭