当前位置:首页 > 单片机 > 单片机
[导读]在捕捉模式下,当对应的CCPx引脚上有事件发生时,CCPRxH:CCPRxL寄存器对将捕捉TMR1寄存器或TMR3寄存器的16位值。事件定义为下列情况之一:?每个下降沿?每个上升沿?每4个上升沿?每16个上升沿u通过模式选择位CCPxM3:CC

在捕捉模式下,当对应的CCPx引脚上有事件发生时,CCPRxH:CCPRxL寄存器对将捕捉TMR1寄存器或TMR3寄存器的16位值。事件定义为下列情况之一:

?每个下降沿

?每个上升沿

?每4个上升沿

?每16个上升沿

u通过模式选择位CCPxM3:CCPxM0(CCPxCON<3:0>)选择事件类型。当一个捕捉发生时,中断请求标志位CCPxIF置1,它必须用软件清零。如果在读取寄存器CCPRx之前发生了另一个捕捉,那么之前捕捉的值将被新捕捉的值覆盖。

u在捕捉模式下,应该通过将相应的TRIS方向位置1来将CCPx引脚配置为输入

注: 如果RB3/CCP2或RC1/CCP2引脚被配置为输出,对该端口的写操作会产生捕捉条件。

u用于捕捉功能的定时器(Timer1和/或Timer3)必须运行在定时器模式或同步计数器模式。在异步计数器模式下,无法进行捕捉操作。用于每个CCP模块的定时器由T3CON寄存器选择。

u当捕捉模式改变时,可能会产生错误捕捉中断。用户应该保持CCPxIE中断使能位清零,以避免错误中断。还应该在工作模式发生任何改变之后清零中断标志位CCPxIF。

u在捕捉模式下有4种预分频比值设置,它们可作为工作模式的一部分由模式选择位(CCPxM3:CCPxM0)选择。每当关闭CCP模块或禁止捕捉模式时,预分频计数器就将被清零。这意味着任何复位都将清零预分频计数器。

下面是在SP9608-PIC单片机增强型开发板调试的直流电机测速实验源程序,将RC2/CCP1引脚设置为输入引脚,由光电传感器将电机运行的速度转换成脉冲信号加到RC2/CCP1引脚上,程序中启动CCP模块的捕捉功能来测量脉冲信号的周期,通过计算换算成电机运行的速度值在数码管上显示出来

#include
#define TRUE 1
#define FALSE 0
#define HIGH 1
#define LOW 0
rom unsigned char LEDDATA[]=
{
0x3F,0x06,0x5B,0x4F,0x66,
0x6D,0x7D,0x07,0x7F,0x6F,
0x40,0x00,
};
struct TIMER_STRUCT
{
unsigned int Interval;
unsigned char Enable;
};
struct TIMER_STRUCT Timer1S;
struct CAPTURE_STRUCT
{
unsigned char Flag;
unsigned char Pointer;
unsigned int LowData;
unsigned char HighData;
};
struct CAPTURE_STRUCT MyTMR1;
unsigned char High_TMR1;
struct LED_STRUCT
{
unsigned char DotPointer;
unsigned char ScanPointer;
unsigned char Buffer[8];
};
struct LED_STRUCT NumberLED;
void PIC18F_High_isr (void);
void PIC18F_Low_isr (void);
#pragma code high_vector_section=0x8
void high_vector (void)
{
_asm goto PIC18F_High_isr _endasm
}
#pragma code low_vector_section=0x18
void low_vector (void)
{
_asm goto PIC18F_Low_isr _endasm
}
#pragma code
//---中断高优先级---//
#pragma interrupt PIC18F_High_isr
void PIC18F_High_isr (void)
{
if(TRUE==PIR1bits.TMR1IF)
{
PIR1bits.TMR1IF=FALSE;
High_TMR1++;
}
if(TRUE==PIR1bits.CCP1IF)
{
PIR1bits.CCP1IF=FALSE;
if(FALSE==MyTMR1.Flag)
{
if(0==MyTMR1.Pointer)
{
MyTMR1.Pointer++;
TMR1L=0;
TMR1H=0;
High_TMR1=0;
T1CONbits.TMR1ON=TRUE;
}
else
{
MyTMR1.Pointer=0;
T1CONbits.TMR1ON=FALSE;
MyTMR1.LowData=CCPR1H;
MyTMR1.LowData<<=8;
MyTMR1.LowData|=CCPR1L;
MyTMR1.HighData=High_TMR1;
MyTMR1.Flag=TRUE;
}
}
}
}
//---中断低优先级---//
#pragma interruptlow PIC18F_Low_isr
void PIC18F_Low_isr (void)
{
if(TRUE==PIR2bits.TMR3IF)
{
PIR2bits.TMR3IF=FALSE;
TMR3H=(65536-11962)/256;
TMR3L=(65536-11962)%256;

if(FALSE==Timer1S.Enable)
{
Timer1S.Interval++;
if(250==Timer1S.Interval)
{
Timer1S.Interval=0;
Timer1S.Enable=TRUE;
}
}
if(LOW==LATAbits.LATA0)LATAbits.LATA0=HIGH;
else LATAbits.LATA0=LOW;

LATD=LEDDATA[NumberLED.Buffer[NumberLED.ScanPointer]];
if(NumberLED.ScanPointer==NumberLED.DotPointer)LATD|=0x80;
LATE=NumberLED.ScanPointer;
NumberLED.ScanPointer++;
if(NumberLED.ScanPointer==sizeof(NumberLED.Buffer))
NumberLED.ScanPointer=0;
}
}

void main(void)
{
unsigned char i;
unsigned long temp;
float calctemp;

for(i=0;i NumberLED.ScanPointer=0;
NumberLED.DotPointer=0;
MyTMR1.Pointer=0;
MyTMR1.Flag=FALSE;
MyTMR1.HighData=0;
MyTMR1.LowData=0;
High_TMR1=0;
Timer1S.Interval=0;
Timer1S.Enable=FALSE;

TRISAbits.TRISA0=0;
LATAbits.LATA0=0;
TRISD=0;
LATD=0;
TRISE=0;
LATE=0;
TRISCbits.TRISC0=0;
LATCbits.LATC0=1;
TRISCbits.TRISC1=1;//配置为输入引脚
TRISCbits.TRISC2=1;//配置为输入引脚

CCP1CON=0x04;//捕捉模式,每个1时钟的上升沿捕捉
T3CONbits.T3CCP1=0;//Timer1作为CCP1的时钟源
T3CONbits.T3CCP2=0;
PIR1bits.CCP1IF=FALSE;//捕捉标志清零
PIE1bits.CCP1IE=TRUE;//允许捕捉中断
IPR1bits.CCP1IP=TRUE;//高优先级

T1CON=0x00;//16位定时,预分频为1:1,F=FOSC/4
//TMR1L=0;
//TMR1H=0;
PIR1bits.TMR1IF=FALSE;//定时器TMR1溢出标志清零
PIE1bits.TMR1IE=TRUE;//允许定时器TMR1溢出中断
IPR1bits.TMR1IP=TRUE;//高优先级
//T1CONbits1.TMR1ON=TRUE;//TMR1开始计时

T3CON=0x00;
TMR3H=(65536-11965)/256;
TMR3L=(65536-11965)%256;
PIR2bits.TMR3IF=FALSE;//定时器TMR3溢出标志清零
PIE2bits.TMR3IE=TRUE;//允许定时器TMR3溢出中断
IPR2bits.TMR3IP=FALSE;//低优先级
T3CONbits.TMR3ON=TRUE;//TMR3开始计时

INTCONbits.GIEH=TRUE;
INTCONbits.GIEL=TRUE;
RCONbits.IPEN=TRUE;

while(1)
{
if(TRUE==MyTMR1.Flag)
{
while(FALSE==Timer1S.Enable);
temp=MyTMR1.HighData;
temp<<=16;
temp|=MyTMR1.LowData;
calctemp=12000000;
calctemp/=temp;
calctemp*=100;
temp=calctemp;
NumberLED.DotPointer=2;
for(i=0;i i=0;
while(temp)
{
NumberLED.Buffer[i]=temp%10;
temp/=10;
i++;
}
MyTMR1.Flag=FALSE;
Timer1S.Enable=FALSE;
}
}
}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭