当前位置:首页 > 单片机 > 单片机
[导读]ucGUI是纯C写的的,移植需要定义点阵数,颜色数,和画点函数以下是ucGUI 12864下的移植基于ST7920控制的12864液晶用于字符显示很方便的,但网友说用它显示图形并不合适,原因就是它绘图时先要关闭显示,绘完后又要打

ucGUI是纯C写的的,移植需要定义点阵数,颜色数,和画点函数

以下是ucGUI 12864下的移植

基于ST7920控制的12864液晶用于字符显示很方便的,但网友说用它显示图形并不合适,原因就是它绘图时先要关闭显示,绘完后又要打开,速度会较慢。我没有用过别的液晶,手中只有这一款,摆弄了几天,掌握了一点东西,写出来共享。
首先,我们知道,图形都是由像素点组成的,绘图的基础其实就是画点。只要我们能点亮液晶的任意一个像素点,那么绘图就不是什么难事了。万丈高楼平地起嘛,先要做的,当然是要打好基础。
ST7920提供了用于绘图的GDRAM(graph display RAM)。共 64×32,64是 个字节的空间(由扩充指令设定绘图 RAM 地址),64是行数,32是每行对应的字节数(16bit/2 *16),最多可以控制 256列×64行点阵的二维绘图缓冲空间。在它的Datasheet给出了GDRAM的坐标地址对照表:


(这个就是坐标图,有的分上下两个平屏0-31和32-64)
用坐标表示,就是这样:


它的横坐标(列)每一个地址都是16位bit的。共16x16横坐标(列),256位。每次读写操作是16Bit。
很明显,ST7920能控制256*64像素的液晶屏,而我们的只是128*64像素液晶屏,显然只用到它的一部分。
市面上的12864液晶屏的点阵布局是这样的:分上半屏128x32 + 下半屏128x32,

只要我们清楚了它的GDRAM和屏幕上像素点的映射(对应)关系,点亮对应的像素点就容易多了。

要点亮某一个像素点,就是将这个像素点在GDRAM中对应的位置1,这个相信没人会不知道吧?
我们先讨论一下思路,再一步步写代码。我觉得,思路要比代码重要的多,只要你的思路通了,正确了,那么写出代码肯定会很容易。

首先,给你x,y的坐标,要你点亮一个点,要怎么做呢?从上面的图我们知道,它是分为两个半屏的,首先,我们要确定这个点是在上半屏还是下半屏,然后确定它是在那一行(纵坐标Y),再确定它是在哪一个字节的哪一个位(也就是确定它在那一列,即横坐标X)。这些都确定后我们就定位到某一个具体的位上了,只就将这个位置1,就OK了。

在知道了12864点对应的坐标布局后,还需要知道怎么网12864 内部写这些命令和数据:它们分别是读、写命令、写数据、读忙状态,这个可以参考手册

需要强调的是打点流程是这样的:

打开绘图模式

1. 先将垂直的字节坐标(Y)写入绘图 RAM 地址。
2. 再将的水平坐标(X)写入绘图 RAM 地址。
3. 将 D15?D8 写入到 RAM 中(写入第一个 Bytes)。
4. 将 D7?D0 写入到 RAM 中(写入第二个 Bytes)。 绘图显示的内存对应分布请参考

需要发送4个字节

ucgui 在12864下的移植:

#ifndef__LCD12864_H#define__LCD12864_H#include"LCDConf.h"#include#include"stm32f10x.h"#include "stm32f10x_rcc.h"#include "stm32f10x_gpio.h"#include "stm32GpioBit.h"#define LCD_DELAY  10000#define LCD_RCC  RCC_APB2Periph_GPIOD#define LCD_PORT GPIOD#define LCD_DATA_PIN  GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7//RST#define LCD_RST_PIN    GPIO_Pin_12  #define LCD_RST_PORT   GPIOC#define LCD_RST_RCC    RCC_APB2Periph_GPIOC//PSB#define LCD_PSB_PIN    GPIO_Pin_9#define LCD_PSB_PORT   GPIOA#define LCD_PSB_RCC    RCC_APB2Periph_GPIOA//EN#define LCD_EN_PIN     GPIO_Pin_10#define LCD_EN_PORT    GPIOA#define LCD_EN_RCC     RCC_APB2Periph_GPIOA//RW#define LCD_RW_PIN     GPIO_Pin_11#define LCD_RW_PORT    GPIOC#define LCD_RW_RCC     RCC_APB2Periph_GPIOC//RS#define LCD_RS_PIN     GPIO_Pin_10#define LCD_RS_PORT    GPIOC#define LCD_RS_RCC     RCC_APB2Periph_GPIOC/*DB7 busy信号位控制   //PD7 CRH的最高4bit为控制位,=0x33... out   =0x44...in */#define LCM_BUSY_PIN_IN()    LCD_PORT->CRL = (LCD_PORT->CRL & 0x0fffffff)|0x40000000#define LCM_BUSY_PIN_OUT()   LCD_PORT->CRL = (LCD_PORT->CRL & 0x0fffffff)|0x30000000#define SetLcdRS             LCD_RS_PORT->BSRR  =  LCD_RS_PIN#define ResetLcdRS           LCD_RS_PORT->BRR  =  LCD_RS_PIN                             #define SetLcdRW               LCD_RW_PORT->BSRR = LCD_RW_PIN#define ResetLcdRW           LCD_RW_PORT->BRR  =  LCD_RW_PIN                                               #define SetLcdEN               LCD_EN_PORT->BSRR = LCD_EN_PIN#define ResetLcdEN           LCD_EN_PORT->BRR  = LCD_EN_PIN                             #define SetLcdRST               LCD_RST_PORT->BSRR = LCD_RST_PIN#define ResetLcdRST          LCD_RST_PORT->BRR  = LCD_RST_PIN                                                 #define SetLcdPSB               LCD_PSB_PORT->BSRR = LCD_PSB_PIN#define ResetLcdPSB          LCD_PSB_PORT->BRR  = LCD_PSB_PIN#define LCM_WAIT_FOR_BUSY()  do{                                                                 LCM_BUSY_PIN_IN();                                                                        ResetLcdRS;                                                                               SetLcdRW;                                                       while(LCD_PORT->IDR & 0x0080)                                                                   __nop();                                                        LCM_BUSY_PIN_OUT();                                                                   }while(0)                                                  void _SetPixel(uint32_t x, uint32_t y,  uint8_t color);void GUI_Line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint8_t color);uint32_t LCD_GetPoint(uint32_t x, uint32_t y);void LCM_Init( void );                                                                                                                    #endif

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在微控制器领域,MSP430与STM32无疑是两颗璀璨的明星。它们各自凭借其独特的技术特点和广泛的应用领域,在市场上占据了重要的位置。本文将深入解析MSP430与STM32之间的区别,探讨它们在不同应用场景下的优势和局限...

关键字: MSP430 STM32 单片机

STM32是由意法半导体公司(STMicroelectronics)推出的基于ARM Cortex-M内核的32位微控制器系列,以其高性能、低功耗、丰富的外设接口和强大的生态系统深受广大嵌入式开发者喜爱。本文将详细介绍S...

关键字: STM32 单片机

STM32与51单片机之间有什么差异呢?两者可以说是一场科技与性能的较量了。在科技飞速发展的今天,微控制器(MCU)已广泛应用于各类电子设备和系统中,发挥着举足轻重的作用。其中,STM32和51单片机作为两种常见的微控制...

关键字: STM32 51单片机 MCU

电磁铁是一种利用电流产生磁场的装置,具有快速响应、易于控制等特点,在工业自动化、电子设备、科学实验等领域有着广泛的应用。STM32是一款功能强大的微控制器,具有高性能、低功耗、易于编程等优点,是控制电磁铁的理想选择。本文...

关键字: 电磁铁 微控制器 STM32

边缘人工智能的实现涉及到三个基本 要素:安全性,连接性、自主性,而其中自主性是AI能力的体现,也是边缘AI有别于其他传统的物联网的关键。而通过ST Edge AI套件,就可以帮助各种不同类型的开发者实现覆盖全硬件平台的全...

关键字: 边缘人工智能 AI STM32

今天,小编将在这篇文章中为大家带来STM32单片机最小系统的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: 单片机 单片机最小系统 STM32

STM32是一款由STMicroelectronics生产的微控制器系列,具有高性能、低功耗和丰富的外设资源。其中,串口通信是一种常用的通信方式,可以实现与其他设备之间的数据传输。

关键字: STM32 串口通信 微控制器

STM32是一种广泛使用的微控制器,具有丰富的通信接口。其中,串口通信是STM32与其他设备或系统进行数据交换的重要方式之一。本文将详细介绍STM32串口通信的原理、应用及常见故障。

关键字: STM32 串口通信

由于目前缺乏相应的监测技术,地下电缆线路出现异常运行状态无法被及时发现,久而久之易演变成大故障,最终只能通过更换地下电缆进行修复,耗费大量的人力、物力。鉴于此,开发了一种基于STM32的地下电缆异常状态检测系统,利用热传...

关键字: STM32 地下电缆

交通灯控制器是用于控制交通信号灯运行的设备,它可以根据交通流量、行人需求以及其他因素,动态地调整信号灯的变化时间和绿灯时长,以保证交通的流畅和安全。

关键字: 交通信号灯 STM32
关闭
关闭