当前位置:首页 > 单片机 > 单片机
[导读]ucGUI是纯C写的的,移植需要定义点阵数,颜色数,和画点函数以下是ucGUI 12864下的移植基于ST7920控制的12864液晶用于字符显示很方便的,但网友说用它显示图形并不合适,原因就是它绘图时先要关闭显示,绘完后又要打

ucGUI是纯C写的的,移植需要定义点阵数,颜色数,和画点函数

以下是ucGUI 12864下的移植

基于ST7920控制的12864液晶用于字符显示很方便的,但网友说用它显示图形并不合适,原因就是它绘图时先要关闭显示,绘完后又要打开,速度会较慢。我没有用过别的液晶,手中只有这一款,摆弄了几天,掌握了一点东西,写出来共享。
首先,我们知道,图形都是由像素点组成的,绘图的基础其实就是画点。只要我们能点亮液晶的任意一个像素点,那么绘图就不是什么难事了。万丈高楼平地起嘛,先要做的,当然是要打好基础。
ST7920提供了用于绘图的GDRAM(graph display RAM)。共 64×32,64是 个字节的空间(由扩充指令设定绘图 RAM 地址),64是行数,32是每行对应的字节数(16bit/2 *16),最多可以控制 256列×64行点阵的二维绘图缓冲空间。在它的Datasheet给出了GDRAM的坐标地址对照表:


(这个就是坐标图,有的分上下两个平屏0-31和32-64)
用坐标表示,就是这样:


它的横坐标(列)每一个地址都是16位bit的。共16x16横坐标(列),256位。每次读写操作是16Bit。
很明显,ST7920能控制256*64像素的液晶屏,而我们的只是128*64像素液晶屏,显然只用到它的一部分。
市面上的12864液晶屏的点阵布局是这样的:分上半屏128x32 + 下半屏128x32,

只要我们清楚了它的GDRAM和屏幕上像素点的映射(对应)关系,点亮对应的像素点就容易多了。

要点亮某一个像素点,就是将这个像素点在GDRAM中对应的位置1,这个相信没人会不知道吧?
我们先讨论一下思路,再一步步写代码。我觉得,思路要比代码重要的多,只要你的思路通了,正确了,那么写出代码肯定会很容易。

首先,给你x,y的坐标,要你点亮一个点,要怎么做呢?从上面的图我们知道,它是分为两个半屏的,首先,我们要确定这个点是在上半屏还是下半屏,然后确定它是在那一行(纵坐标Y),再确定它是在哪一个字节的哪一个位(也就是确定它在那一列,即横坐标X)。这些都确定后我们就定位到某一个具体的位上了,只就将这个位置1,就OK了。

在知道了12864点对应的坐标布局后,还需要知道怎么网12864 内部写这些命令和数据:它们分别是读、写命令、写数据、读忙状态,这个可以参考手册

需要强调的是打点流程是这样的:

打开绘图模式

1. 先将垂直的字节坐标(Y)写入绘图 RAM 地址。
2. 再将的水平坐标(X)写入绘图 RAM 地址。
3. 将 D15?D8 写入到 RAM 中(写入第一个 Bytes)。
4. 将 D7?D0 写入到 RAM 中(写入第二个 Bytes)。 绘图显示的内存对应分布请参考

需要发送4个字节

ucgui 在12864下的移植:

#ifndef__LCD12864_H#define__LCD12864_H#include"LCDConf.h"#include#include"stm32f10x.h"#include "stm32f10x_rcc.h"#include "stm32f10x_gpio.h"#include "stm32GpioBit.h"#define LCD_DELAY  10000#define LCD_RCC  RCC_APB2Periph_GPIOD#define LCD_PORT GPIOD#define LCD_DATA_PIN  GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7//RST#define LCD_RST_PIN    GPIO_Pin_12  #define LCD_RST_PORT   GPIOC#define LCD_RST_RCC    RCC_APB2Periph_GPIOC//PSB#define LCD_PSB_PIN    GPIO_Pin_9#define LCD_PSB_PORT   GPIOA#define LCD_PSB_RCC    RCC_APB2Periph_GPIOA//EN#define LCD_EN_PIN     GPIO_Pin_10#define LCD_EN_PORT    GPIOA#define LCD_EN_RCC     RCC_APB2Periph_GPIOA//RW#define LCD_RW_PIN     GPIO_Pin_11#define LCD_RW_PORT    GPIOC#define LCD_RW_RCC     RCC_APB2Periph_GPIOC//RS#define LCD_RS_PIN     GPIO_Pin_10#define LCD_RS_PORT    GPIOC#define LCD_RS_RCC     RCC_APB2Periph_GPIOC/*DB7 busy信号位控制   //PD7 CRH的最高4bit为控制位,=0x33... out   =0x44...in */#define LCM_BUSY_PIN_IN()    LCD_PORT->CRL = (LCD_PORT->CRL & 0x0fffffff)|0x40000000#define LCM_BUSY_PIN_OUT()   LCD_PORT->CRL = (LCD_PORT->CRL & 0x0fffffff)|0x30000000#define SetLcdRS             LCD_RS_PORT->BSRR  =  LCD_RS_PIN#define ResetLcdRS           LCD_RS_PORT->BRR  =  LCD_RS_PIN                             #define SetLcdRW               LCD_RW_PORT->BSRR = LCD_RW_PIN#define ResetLcdRW           LCD_RW_PORT->BRR  =  LCD_RW_PIN                                               #define SetLcdEN               LCD_EN_PORT->BSRR = LCD_EN_PIN#define ResetLcdEN           LCD_EN_PORT->BRR  = LCD_EN_PIN                             #define SetLcdRST               LCD_RST_PORT->BSRR = LCD_RST_PIN#define ResetLcdRST          LCD_RST_PORT->BRR  = LCD_RST_PIN                                                 #define SetLcdPSB               LCD_PSB_PORT->BSRR = LCD_PSB_PIN#define ResetLcdPSB          LCD_PSB_PORT->BRR  = LCD_PSB_PIN#define LCM_WAIT_FOR_BUSY()  do{                                                                 LCM_BUSY_PIN_IN();                                                                        ResetLcdRS;                                                                               SetLcdRW;                                                       while(LCD_PORT->IDR & 0x0080)                                                                   __nop();                                                        LCM_BUSY_PIN_OUT();                                                                   }while(0)                                                  void _SetPixel(uint32_t x, uint32_t y,  uint8_t color);void GUI_Line(uint32_t x0, uint32_t y0, uint32_t x1, uint32_t y1, uint8_t color);uint32_t LCD_GetPoint(uint32_t x, uint32_t y);void LCM_Init( void );                                                                                                                    #endif

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭