当前位置:首页 > 单片机 > 单片机
[导读]DS18B20制作的温度测量模块,这款能显示正负值的单片机DS18B20测温模块是由电子乐屋源创制作,单片机驱动数码管的端口设置成推挽工作方式,这样使用整个显示电路比较简单,数码管段驱动端省去了限流电阻,数码管亮度

DS18B20制作的温度测量模块,这款能显示正负值的单片机DS18B20测温模块是由电子乐屋源创制作,单片机驱动数码管的端口设置成推挽工作方式,这样使用整个显示电路比较简单,数码管段驱动端省去了限流电阻,数码管亮度显示通过程序控制通断时间实现。只使用了6只元件:一只DS18B20数字温度传感器、一个USB插口、一片STC12C4052单片机、一个4位一体共阳数码管,一个10uf贴片复位电容、一个10k的贴片复位电阻。由于电路比较简单,这里直接给出PCB图,设计温度测量范围是:-9.9~99.9℃,下面是制作过程,文后附有源程序,源程序适合于STC1T单片机。下图是制作好的实物工作照片。




为了方便单片机爱好都仿制,附上源程序:注意(贴出来的程序可能头文件会发生变化,注意自己修改一下

//使用单片机内部RC振荡器

#include

#include

#define uchar unsigned char

#define uint unsigned int

sfr P1M0 = 0x91;

sfr P1M1 = 0x92;

sfr P3M0 = 0xB1;

sfr P3M1 = 0xB2;

#define ENABLE_ISP 0x84 //系统工作时钟<6MHz 时,对IAP_CONTR 寄存器设置此值

sbit temp=P1^7;

sbit LED0=P3^0; //C

sbit LED1=P1^4; // 小数点后一位

sbit LED2=P1^3; //个位

sbit LED3=P1^0; // 十位

sbit A=P1^1;

sbit B_B=P1^5;

sbit C=P3^2;

sbit D=P3^4;

sbit E=P3^5;

sbit F=P1^2;

sbit G=P3^1;

sbit H=P3^3; //小数点

uchar temp_low,zf,mz;

int temp_high;

int final_temp;

void dm(mz);

void delay(uint x) //(x+1)*6微

{

while(x--);

}

void delay_long(uint x)

{

uint i;

while(x--)

{

for(i=0;i<125;i++);

}

}

void init_ds18b20()//初始化

{

temp=1;//复位

delay(6);//稍作延时

temp=0;

delay(145);//延时大于480us(520us)

temp=1;

delay(14);//这个时间不能太长,否则就过了检测信号的时间了

void read_signal()//读取应答脉冲

{

while(temp);

while(~temp)//检测到应答脉冲

{

delay(7);

break;

}

}

bit readbit_ds18b20()

{

bit b;

temp=1;

delay(6);//稍作延时

temp=0;

delay(2);//保持低最少1us(4us)

temp=1;

delay(4);//延时15us以后输出数据有效(23us)

b=temp;

delay(20);//读时间间隙不少于60us(71us)

return(b);

}

void writebyte_ds18b20(uchar b)//写0写1一起完成

{

int i,j;

uchar btemp;

temp=1;

for(i=0;i<8;i++)

{

j=0;

btemp=b&0x01;

b>>=1;

if(btemp==0)

{

temp=0;

delay(18);//保持拉低在60us以上(71us)

temp=1;

}

else

{

temp=0;

j++;//15us之内拉高

temp=1;

delay(18);//整个写时序时间在60us以上(71us)

}

}

}

void temp_convert()

{

init_ds18b20();//初始化

read_signal();//读取应答脉冲

delay_long(4);

writebyte_ds18b20(0xcc);//跳过验证序列号命令,若单线上有多个ds18b20,则不可用这个命令

writebyte_ds18b20(0x44);//启动温度转换命令

}

char readbyte_ds18b20()

{

uint i;

uchar a,b;

b=0;

for(i=0;i<8;i++)

{

a=readbit_ds18b20();

b=(a<

}

return(b);

}

uint read_ds18b20()

{

int y;

float yy;

init_ds18b20();//初始化

read_signal();//读取应答脉冲

delay_long(4);

writebyte_ds18b20(0xcc);//跳过验证序列号命令

writebyte_ds18b20(0xbbe);//读取内部ROM的数据

temp_low=readbyte_ds18b20();//读数据时低位在前,高位在后

temp_high=readbyte_ds18b20();

y=temp_high;

y<<=8;

y=y|temp_low;//整合为一个int型

yy=y*0.0625;//12位精度为0.0625

y=yy*10+0.5;

return(y);

}

void display(uint x)

{

uchar sw,gw,xs;

sw=x/100;

gw=x0/10; //个位

xs=x; //小数

if(zf==1)

{

sw=11;

}

else

{

if(sw==0)

{

sw=12;

}

}

dm(sw);

LED3=1;

delay(30);

LED3=0;

delay(10);

dm(gw);

LED2=1;

delay(30);

LED2=0;

delay(10);

dm(13);

LED2=1;

delay(10);

LED2=0;

delay(10);

dm(xs);

LED1=1;

delay(30);

LED1=0;

delay(10);

dm(10);

LED0=1;

delay(30);

LED0=0;

delay(10);

}

void dm(mz)

{

switch(mz)

{

case 0:A=0;B_B=0;C=0;D=0;E=0;F=0;G=1;H=1;break;

case 1:A=1;B_B=0;C=0;D=1;E=1;F=1;G=1;H=1;break;

case 2:A=0;B_B=0;C=1;D=0;E=0;F=1;G=0;H=1;break;

case 3:A=0;B_B=0;C=0;D=0;E=1;F=1;G=0;H=1;break;

case 4:A=1;B_B=0;C=0;D=1;E=1;F=0;G=0;H=1;break;

case 5:A=0;B_B=1;C=0;D=0;E=1;F=0;G=0;H=1;break;

case 6:A=0;B_B=1;C=0;D=0;E=0;F=0;G=0;H=1;break;

case 7:A=0;B_B=0;C=0;D=1;E=1;F=1;G=1;H=1;break;

case 8:A=0;B_B=0;C=0;D=0;E=0;F=0;G=0;H=1;break;

case 9:A=0;B_B=0;C=0;D=0;E=1;F=0;G=0;H=1;break;

case 10:A=0;B_B=1;C=1;D=0;E=0;F=0;G=1;H=1;break; //C

case 11:A=1;B_B=1;C=1;D=1;E=1;F=1;G=0;H=1;break; //-

case 12:A=1;B_B=1;C=1;D=1;E=1;F=1;G=1;H=1;break; //不显示

case 13:A=1;B_B=1;C=1;D=1;E=1;F=1;G=1;H=0;break; //小数点

}

}

void main(void)

{

P1M0 = 0x00;

P1M1 = 0x19;

P3M0=0x00;

P3M1=0x01;

LED0=0; //C

LED1=0; // 小数点后一位

LED2=0; //个位

LED3=0; // 十位

read_ds18b20();

temp_convert();

delay_long(5);

delay_long(2000);//delay(5)就是延时555us

while(1)

{

temp_convert();

delay_long(5);

final_temp=read_ds18b20();

if(final_temp<0)

{

final_temp=-(final_temp-1);

zf=1;

}

else zf=0;

display(final_temp);

}

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭