当前位置:首页 > 单片机 > 单片机
[导读]高级控制定时器(TIM1 和TIM8)  TIM1和TIM8定时器的功能包括:● 16位向上、向下、向上/ 下自动装载计数器● 16位可编程( 可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535 之间的任意数值● 多达4个独立

高级控制定时器(TIM1 和TIM8)

  TIM1和TIM8定时器的功能包括:
● 16位向上、向下、向上/ 下自动装载计数器
● 16位可编程( 可以实时修改)预分频器,计数器时钟频率的分频系数为1~65535 之间的任意数值
● 多达4个独立通道:
─ 输入捕获
─ 输出比较
─ PWM生成(边缘或中间对齐模式)
─ 单脉冲模式输出
● 死区时间可编程的互补输出
●使用外部信号控制定时器和定时器互联的同步电路
● 允许在指定数目的计数器周期之后更新定时器寄存器的重复计数器
● 刹车输入信号可以将定时器输出信号置于复位状态或者一个已知状态
● 如下事件发生时产生中断/DMA :
─ 更新:计数器向上溢出/ 向下溢出,计数器初始化(通过软件或者内部/ 外部触发)
─ 触发事件(计数器启动、停止、初始化或者由内部/ 外部触发计数)
─ 输入捕获
─ 输出比较
─ 刹车信号输入
● 支持针对定位的增量(正交)编码器和霍尔传感器电路
● 触发输入作为外部时钟或者按周期的电流管理

通用定时器(TIMx)

通用TIMx (TIM2、TIM3、TIM4和TIM5)定时器功能包括:
● 16位向上、向下、向上/ 向下自动装载计数器
● 16位可编程( 可以实时修改)预分频器,计数器时钟频率的分频系数为1~65536 之间的任意数值
● 4个独立通道:
─ 输入捕获
─ 输出比较
─ PWM生成(边缘或中间对齐模式)
─ 单脉冲模式输出
● 使用外部信号控制定时器和定时器互连的同步电路
● 如下事件发生时产生中断/DMA :
─ 更新:计数器向上溢出/ 向下溢出,计数器初始化(通过软件或者内部/ 外部触发)
─ 触发事件(计数器启动、停止、初始化或者由内部/ 外部触发计数)
─ 输入捕获
─ 输出比较
● 支持针对定位的增量(正交)编码器和霍尔传感器电路
● 触发输入作为外部时钟或者按周期的电流管理

基本定时器(TIM6 和TIM7)

TIM6和TIM7定时器的主要功能包括:
● 16位自动重装载累加计数器
● 16位可编程( 可实时修改)预分频器,用于对输入的时钟按系数为1~65536 之间的任意数值
分频
● 触发DAC的同步电路
● 在更新事件(计数器溢出)时产生中断/DMA 请求

STM32的通用定时器是一个通过可编程预分频器(PSC)驱动的16 位自动装载计数器(CNT)构成。STM32的通用定时器可以被用于:测量输入信号的脉冲长度(输入捕获)或者产生输出波形(输出比较和PWM)等。 使用定时器预分频器和RCC时钟控制器预分频器,脉冲长度和波形周期可以在几个微秒到几个毫秒间调整。STM32的每个通用定时器都是完全独立的,没有互相共享的任何资源。

注意单元模块时钟总线

脉冲宽度调制(PWM),是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术。简单一点,就是对脉冲宽度的控制。STM32的定时器除了TIM6和7。其他的定时器都可以用来产生PWM输出。其中高级定时器TIM1和TIM8可以同时产生多达7路的PWM输出。而通用定时器也能同时产生多达4路的PWM输出,这样,STM32最多可以同时产生30路PWM输出!

要使STM32的通用定时器TIMx产生PWM输出,除了定时器介绍的寄存器外,我们还会用到3 个寄存器,来控制PWM 的。这三个寄存器分别是:捕获/比较模式寄存器(TIMx_CCMR1/2)、捕获/比较使能寄存器(TIMx_CCER)、捕获/比较寄存器(TIMx_CCR1~4)。

TIM3_CH2默认是接在PA7面的,而我们的DS0接在PB5上面,如果普通MCU,可能就只能用飞线把PA7飞到PB5上来实现了,不过,我们用的是STM32,它比较高级,可以通过重映射功能,把TIM3_CH2映射到PB5上。 STM32的重映射控制是由复用重映射和调试IO 配置寄存器(AFIO_MAPR)控制的。

1)开启TIM3时钟以及复用功能时钟,配置PB5为复用输出。

要使用TIM3,我们必须先开启TIM3的时钟,还要配置PB5为复用输出,这是因为TIM3_CH2通道将重映射到PB5上,此时,PB5属于复用功能输出。

库函数使能TIM3时钟的方法是:
      RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //使能定时器3时钟

库函数设置AFIO时钟的方法是:
      RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); //复用时钟使能

设置PB5为复用功能输出的方法:GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出

2)设置TIM3_CH2重映射到PB5上。

因为TIM3_CH2默认是接在PA7上的,所以我们需要设置TIM3_REMAP为部分重映射(通过AFIO_MAPR配置),让TIM3_CH2重映射到PB5上面。在库函数函数里面设置重映射的函数是:
      void GPIO_PinRemapConfig(uint32_t GPIO_Remap, FunctionalState NewState);

  STM32重映射只能重映射到特定的端口。第一个入口参数可以理解为设置重映射的类型,比如TIM3部分重映射入口参数为 GPIO_PartialRemap_TIM3,这点可以顾名思义了。所以TIM3部分重映射的库函数实现方法是: GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE);

3)初始化TIM3,设置TIM3的ARR和PSC。

  在开启了TIM3的时钟之后,我们要设置ARR和PSC两个寄存器的值来控制输出PWM的周期。当PWM周期太慢(低于50Hz)的时候,我们就会明显感觉到闪烁了。因此,PWM周期在这里不宜设置的太小。这在库函数是通过TIM_TimeBaseInit函数实现的,在上一节定时器中断章节我们已经有讲解,这里就不详细讲解,调用的格式为:
TIM_TimeBaseStructure.TIM_Period = arr; //设置自动重装载值
TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置预分频值
TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //向上计数模式
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx的

4)设置TIM3_CH2的PWM模式,使能TIM3的CH2输出。

  接下来,我们要设置TIM3_CH2为PWM模式(默认是冻结的),因为我们的DS0是低电平亮,而我们希望当CCR2的值小的时候,DS0就暗,CCR2值大的时候,DS0就亮,所以我们要通过配置TIM3_CCMR1的相关位来控制TIM3_CH2的模式。在库函数中,PWM通道设置是通过函数TIM_OC1Init()~TIM_OC4Init()来设置的,不同的通道的设置函数不一样,这里我们使用的是通道2,所以使用的函数是TIM_OC2Init()。
    void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);

5)使能TIM3。

在完成以上设置了之后,我们需要使能TIM3。使能TIM3的方法前面已经讲解过:  TIM_Cmd(TIM3, ENABLE); //使能TIM3
6)修改TIM3_CCR2来控制占空比。
  最后,在经过以上设置之后,PWM其实已经开始输出了,只是其占空比和频率都是固定的,而我们通过修改TIM3_CCR2则可以控制CH2的输出占空比。继而控制DS0的亮度。 在库函数中,修改TIM3_CCR2占空比的函数是:
      void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2); 理所当然,对于其他通道,分别有一个函数名字,函数格式为TIM_SetComparex(x=1,2,3,4)。
      通过以上6个步骤,我们就可以控制TIM3的CH2输出PWM波了。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭