当前位置:首页 > 单片机 > 单片机
[导读] AVR端口是真正的双向端口,不像51伪双向。这也是AVR的一项优势,只是操作时大家注意DDRn就可以了。真正双向端口在模拟时序方面不如伪双向的方便。DDRnPORTnPINn解释:n为端口号:ABCDEDDRn:控制端口是

AVR端口是真正的双向端口,不像51伪双向。这也是AVR的一项优势,只是操作时大家注意DDRn就可以了。真正双向端口在模拟时序方面不如伪双向的方便。
DDRnPORTnPINn解释:n为端口号:ABCDE
DDRn:控制端口是输入还是输出,0为输入,1为输出。个人记忆方法:一比零大所以往外挤,即1为输出,0为输入。


PORTn:从引脚输出信号,当DDRn为1时,可以通过PORTn=x等端口操作语句给引脚输出赋值。
PINn:从引脚读输入信号,无论DDRn为何值,都可以通过x=PINn获得端口n的外部电平。
当引脚配置为输入时,若PORTxn为"1“,上拉电阻将使能。内部上拉电阻的使用在键盘扫描的时候还要说到。
端口更详细功能及介绍以及端口第二功能请参考数据手册。
端口引脚配置
DDxnPORTxnPUD(inSFIOR)I/O上拉电阻说明
00X输入No高阻态(Hi-Z)
010输入Yes被外部电路拉低时将输出电流
011输入No高阻态(Hi-Z)
10X输出No输出低电平(漏电流)
11X输出No输出高电平(源电流)

如果有引脚未被使用,建议给这些引脚赋予一个确定电平。最简单的保证未用引脚具有确定电平的方法是使能内部上拉电阻。但要注意的是复位时上拉电阻将被禁用。如果复位时的功耗也有严格要求则建议使用外部上拉或下拉电阻。不推荐直接将未用引脚与VCC或GND连接,因为这样可能会在引脚偶然作为输出时出现冲击电流。
下面我们来看例子:
voidport_init(void)
{
PORTA=0x03;
DDRA=0x03;
PORTB=0x00;
DDRB=0x01;
PORTC=0x00;
DDRC=0x00;
PORTD=0x00;
DDRD=0x00;//建议赋值为零
}

PORTA=0x03;DDRA=0x03;这两句使PA口的PA1和PA0处于输出状态,PA7—PA2处于输入状态。这里的0x03即二进制的00000011,从左到右对应于Pn7--Pn0八个IO口。

通过跑马灯程序来深入理解IO口的操作:

CODE:

//ICC-AVRapplicationbuilder:2006-11-219:20:57
//Target:M32
//Crystal:7.3728MHz

#include
#include

void_delay(unsignedcharn)//延时函数定义
{
unsignedchari,j;
for(;n!=0;n--)//n*10ms
{
for(j=100;j!=0;j--)//100us*100=10ms
{
for(i=147;i!=0;i--)//delay100us
;
}
}
}

intmain(void)
{
unsignedchari,j,k;//
PORTA=0xFF;//PA口设为输出高电平,灯灭
DDRA=0xFF;//PA口设置为输出
while(1)
{
i=1;
for(j=0;j<8;j++)//循环8次,即PA0~~PA7轮流闪亮
{
PORTA=~i;//反相输出,低电平有效,对应的灯亮
for(k=0;k<10;k++)_delay(100);//延时100*10=1秒,可自行调节i=i<<1;//左移一位,I的值将向下面的列表那样变化
//0b00000001PA0
//0b00000010PA1
//0b00000100PA2
//0b00001000PA3
//0b00010000PA4
//0b00100000PA5
//0b01000000PA6
//0b10000000PA7
}
}
}


[Copytoclipboard]

其他IO口操作指令:

voidmain(void)
{
PORTA=0xff;
DDRA=0xff;//输出模式,IO口上拉电阻有效,1为输出,0为输入。
PORTA=0xf0;//等
以下三条指令只对操作符号右边的数字位是一的位操作。
PORTA&=~0x70;//清零0x70为01110000,即把654三位清零,其余数位不变。
PORTA"=0x77;//置一0x77为01110111,即把654210六位清零,其余数位不变。
PORTA^=0x70;//翻转0x70为01110000,即654三位,如果是零变成1,是一变成0。
(P&0x80)==0x80;//按位与判断p的第七位是否是一,是则成立
}

关于1<(1while(1)
{
while(ADCSR&(1<{
程序......
}
}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭