当前位置:首页 > 单片机 > 单片机
[导读]SI4438射频模块参数:1、频率范围:425-525MHz2、数字接收信号强度指示(RSSI)3、64字节收发数据寄存器(FIFO)4、跳频功能等!使用SI的WDS工具生成代码1、 选择仿真模式2、 芯片选择si4438 B1模式3、 Radio Configura

SI4438射频模块参数:

1、频率范围:425-525MHz

2、数字接收信号强度指示(RSSI)

3、64字节收发数据寄存器(FIFO)

4、跳频功能

等!


使用SI的WDS工具生成代码

1、 选择仿真模式

2、 芯片选择si4438 B1模式

3、 Radio Configuration Application

4、 Select Application




1、 Select Project

选择Bidirectional packet ,双向通信模式

2、 Configure project 配置工程

Frequency and power: 频率和功率的设置,

base freq基频,中心频率,

Channel spacing 通道空间,某个通道回忆 base freq+ channel spacin*num 为频率通信,当然会有小浮动,但是浮动不会超过 Channel spacing。

计算通道号数量:

(Base freq + channel spacin*num) >=425MHz

(Base freq + channel spacin*num) <=525MHz


所以Base freq的设置以及channel spacing的设置会影响到通道的数量。

Crystal:晶振默认!

其他的不动

RF parameter



这里设置的射频参数,包括调制模式、数据速率等参数,RSSI threshold设置信号阈值。数据速率射频之间的距离有关系,速度越快,对应的距离要求越短。所以这应该按照自己的需求来选。




Pakect数据包的设置,包括TX和RX缓冲区的长度、前导码的配置Preamble、同步字的配置SyncWord、Field对应负载的字节数据,注意总的负载字节数为TX和RX阈值,具体分几个fields看个人需求。



NIRQ配置成RX data output,即NIRQ和单片机引脚相连单片机可以通过该引脚判断是否有数据接收。低电平有效!然后即可生成代码!

生成的代码是基于C8051F910单片机的,我们所用的是STM32,所以必须做好移植。

SPI移植:

不需要生成spi.c,建立STM32 SPI配置文件:


#include

#include"stm32f10x_spi.h"

#include"STM32SPI2.h"

u8STM32SPI2_ReadWriteByte(u8TxData)

{

u8retry=0;

while((SPI2->SR&1<<1)==0){

retry++;

if(retry>250)

return0;

}

SPI2->DR=TxData;

retry=0;

while((SPI2->SR&1<<0)==0)//

{

retry++;

if(retry>250)

return0;

}

returnSPI2->DR;

}

//APB2=72M/8=9M

voidSTM32SPI2_Config(void)

{

SPI_InitTypeDefSPI_InitStructure;

GPIO_InitTypeDefGPIO_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);

/*ConfigureSPI2pins:SCK,MISOandMOSI*/

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_13|GPIO_Pin_14|GPIO_Pin_15;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_PP;

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz;

GPIO_Init(GPIOB,&GPIO_InitStructure);

/*ConfigureNSELpins*/

GPIO_InitStructure.GPIO_Pin=GPIO_Pin_12;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz;

GPIO_Init(GPIOB,&GPIO_InitStructure);

GPIO_SetBits(GPIOB,GPIO_Pin_12);

/*SPI2configuration*/

SPI_I2S_DeInit(SPI2);

RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2,ENABLE);

SPI_Cmd(SPI2,DISABLE);

SPI_InitStructure.SPI_Direction=SPI_Direction_2Lines_FullDuplex;

SPI_InitStructure.SPI_Mode=SPI_Mode_Master;

SPI_InitStructure.SPI_DataSize=SPI_DataSize_8b;

SPI_InitStructure.SPI_CPOL=SPI_CPOL_Low;

SPI_InitStructure.SPI_CPHA=SPI_CPHA_1Edge;

SPI_InitStructure.SPI_NSS=SPI_NSS_Soft;

SPI_InitStructure.SPI_BaudRatePrescaler=SPI_BaudRatePrescaler_128;//SPI_BaudRatePrescaler_64;

SPI_InitStructure.SPI_FirstBit=SPI_FirstBit_MSB;

SPI_InitStructure.SPI_CRCPolynomial=7;

SPI_Init(SPI2,&SPI_InitStructure);

/*EnableSPI2*/

SPI_Cmd(SPI2,ENABLE);

STM32SPI2_ReadWriteByte(0xff);//启动传输

}

//í?ò?ê±?????üê1?üò???SPIéè±?,2?êyTYPE_SPI_ALL?TD§

voidSTM32SPI2_Enable(TYPE_SPItype)

{

/*

if(type==TYPE_SPI_FLASH)//这其实没啥用

{

GPIO_SetBits(GPIOA,GPIO_Pin_4);//ê§?üRF

GPIO_ResetBits(GPIOC,GPIO_Pin_4);//ê1?üFLASH

}

else

{

*/

//GPIO_SetBits(GPIOC,GPIO_Pin_4);//ê§?üFLASH

GPIO_ResetBits(GPIOB,GPIO_Pin_12);//

/*

}

*/

}


voidSTM32SPI2_Disable(TYPE_SPItype)

{

if(type==TYPE_SPI_FLASH)

{

GPIO_SetBits(GPIOC,GPIO_Pin_4);//ê§?üFLASH

}

elseif(type==TYPE_SPI_RF)

{

GPIO_SetBits(GPIOB,GPIO_Pin_12);//ê§?üRF

}

else

{

GPIO_SetBits(GPIOC,GPIO_Pin_4);//ê§?üFLASH

GPIO_SetBits(GPIOA,GPIO_Pin_4);//ê§?üRF

}

}

radio.cradiohal层spi接口修改处

voidradio_hal_SpiWriteByte(u8byteToWrite)

{

STM32SPI2_ReadWriteByte(byteToWrite);

}

u8radio_hal_SpiReadByte(void)

{

returnSTM32SPI2_ReadWriteByte(0xFF);

}

voidradio_hal_SpiWriteData(u8byteCount,u8*pData)

{

while(byteCount--)

{

STM32SPI2_ReadWriteByte(*pData++);

}

}

voidradio_hal_SpiReadData(u8byteCount,u8*pData)

{

while(byteCount--)

{

*pData++=STM32SPI2_ReadWriteByte(0xFF);

}

}

Radio_Config:配置SDNpowerIRQ引脚

voidRadio_Config(void)

{

GPIO_InitTypeDefGPIO_InitStructure;

//oíFLASH12ó?ò???SPI,SPIò??-?úFLASHμ?3?ê??ˉ?Dμ÷ó?

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC,ENABLE);

//RF_POWER

GPIO_InitStructure.GPIO_Pin=RF_POWER_PIN;

GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;

GPIO_Init(RF_POWER_PORT,&GPIO_InitStructure);

GPIO_SetBits(RF_POWER_PORT,RF_POWER_PIN);

//RF_ON

GPIO_InitStructure.GPIO_Pin = RF_

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭