当前位置:首页 > 单片机 > 单片机
[导读]有了 D/A 这个武器,我们就不仅仅可以输出方波信号了,可以输出任意波形了,比如正弦波、三角波、锯齿波等等。以正弦波为例,首先我们要建立一个正弦波的波表。这些不需要大家去逐一计算,可以通过搜索找到正弦波数据

有了 D/A 这个武器,我们就不仅仅可以输出方波信号了,可以输出任意波形了,比如正弦波、三角波、锯齿波等等。以正弦波为例,首先我们要建立一个正弦波的波表。这些不需要大家去逐一计算,可以通过搜索找到正弦波数据表,然后可以根据时间参数自己选取其中一定量数据作为我们程序的正弦波表,我们的程序代码选取了 32 个点。


/*****************************I2C.c 文件程序源代码*******************************/

(此处省略,可参考之前章节的代码)

/***************************keyboard.c 文件程序源代码****************************/

(此处省略,可参考之前章节的代码)

/*****************************main.c 文件程序源代码******************************/

纯文本复制

#include

unsigned char code SinWave[] = { //正弦波波表

127, 152, 176, 198, 217, 233, 245, 252,

255, 252, 245, 233, 217, 198, 176, 152,

127, 102, 78, 56, 37, 21, 9, 2,

0, 2, 9, 21, 37, 56, 78, 102

};

unsigned char code TriWave[] = { //三角波波表

0, 16, 32, 48, 64, 80, 96, 112,

128, 144, 160, 176, 192, 208, 224, 240,

255, 240, 224, 208, 192, 176, 160, 144,

128, 112, 96, 80, 64, 48, 32, 16

};

unsigned char code SawWave[] = { //锯齿波表

0, 8, 16, 24, 32, 40, 48, 56,

64, 72, 80, 88, 96, 104, 112, 120,

128, 136, 144, 152, 160, 168, 176, 184,

192, 200, 208, 216, 224, 232, 240, 248

};

unsigned char code *pWave; //波表指针

unsigned char T0RH = 0; //T0 重载值的高字节

unsigned char T0RL = 0; //T0 重载值的低字节

unsigned char T1RH = 1; //T1 重载值的高字节

unsigned char T1RL = 1; //T1 重载值的低字节

void ConfigTimer0(unsigned int ms);

void SetWaveFreq(unsigned char freq);

extern void KeyScan();

extern void KeyDriver();

extern void I2CStart();

extern void I2CStop();

extern bit I2CWrite(unsigned char dat);

void main(){

EA = 1; //开总中断

ConfigTimer0(1); //配置 T0 定时 1ms

pWave = SinWave; //默认正弦波

SetWaveFreq(10); //默认频率 10Hz

while (1){

KeyDriver(); //调用按键驱动

}

}

/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码 */

void KeyAction(unsigned char keycode){

static unsigned char i = 0;

if (keycode == 0x26){ //向上键,切换波形

//在 3 种波形间循环切换

if (i == 0){

i = 1;

pWave = TriWave;

}else if (i == 1){

i = 2;

pWave = SawWave;

}else{

i = 0;

pWave = SinWave;

}

}

}

/* 设置 DAC 输出值,val-设定值 */

void SetDACOut(unsigned char val){

I2CStart();

if (!I2CWrite(0x48<<1)){ //寻址 PCF8591,如未应答,则停止操作并返回

I2CStop();

return;

}

I2CWrite(0x40); //写入控制字节

I2CWrite(val); //写入 DA 值

I2CStop();

}

/* 设置输出波形的频率,freq-设定频率 */

void SetWaveFreq(unsigned char freq){

unsigned long tmp;

tmp = (11059200/12) / (freq*32); //定时器计数频率,是波形频率的 32 倍

tmp = 65536 - tmp; //计算定时器重载值

tmp = tmp + 33; //修正中断响应延时造成的误差

T1RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节

T1RL = (unsigned char)tmp;

TMOD &= 0x0F; //清零 T1 的控制位

TMOD |= 0x10; //配置 T1 为模式 1

TH1 = T1RH; //加载 T1 重载值

TL1 = T1RL;

ET1 = 1; //使能 T1 中断

PT1 = 1; //设置为高优先级

TR1 = 1; //启动 T1

}

/* 配置并启动 T0,ms-T0 定时时间 */

void ConfigTimer0(unsigned int ms){

unsigned long tmp; //临时变量

tmp = 11059200 / 12; //定时器计数频率

tmp = (tmp * ms) / 1000; //计算所需的计数值

tmp = 65536 - tmp; //计算定时器重载值

tmp = tmp + 28;//补偿中断响应延时造成的误差

T0RH = (unsigned char)(tmp>>8); //定时器重载值拆分为高低字节

T0RL = (unsigned char)tmp;

TMOD &= 0xF0; //清零 T0 的控制位

TMOD |= 0x01; //配置 T0 为模式 1

TH0 = T0RH; //加载 T0 重载值

TL0 = T0RL;

ET0 = 1; //使能 T0 中断

TR0 = 1; //启动 T0

}

/* T0 中断服务函数,执行按键扫描 */

void InterruptTimer0() interrupt 1{

TH0 = T0RH; //重新加载重载值

TL0 = T0RL;

KeyScan(); //按键扫描

}

/* T1 中断服务函数,执行波形输出 */

void InterruptTimer1() interrupt 3{

static unsigned char i = 0;

TH1 = T1RH; //重新加载重载值

TL1 = T1RL;

//循环输出波表中的数据

SetDACOut(pWave[i]);

i++;

if (i >= 32){

i = 0;

}

}



这个程序可以通过“向上”按键来实现波形输出切换,波形输出的定时刷新由定时器 T1定时来完成,改变 T1 的定时周期即可改变波形的输出频率。D/A 输出没有办法接到显示界面,所以我们用示波器抓出来波形给大家看一下,如图 17-11、图 17-12、图 17-13 所示。


图 17-11 D/A 输出正弦波形


图 17-12 D/A 输出三角波形


图 17-13 D/A 输出锯齿波形


这几张图可以直观的看到我们程序输出的波形。细心的同学会发现我们波形上有很多小锯齿,没有平滑的连起来。这是因为我们 DA 最多只能输出 0~Vref 之间的 256 个离散的电压值,而不是连续的任意值,所以每个离散值都会持续一定的时间,然后跳变到下一个离散值,于是就呈现出了波形上的这种锯齿。在实际开发中,我们只需要在 DA 后级加一级低通滤波电路,就可以让带锯齿的波形变得平滑起来。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭