当前位置:首页 > 单片机 > 单片机
[导读] C语言是当前举世公认的高效简洁而又非常贴近硬件的编程语言之一。将C语言向单片机MCS-51上的移植始于2O世纪8O年代的中后期,经过近1O年的发展,C语言克服了产生代码过长、运行速度较慢的缺点,并且由于C语言在开发

C语言是当前举世公认的高效简洁而又非常贴近硬件的编程语言之一。将C语言向单片机MCS-51上的移植始于2O世纪8O年代的中后期,经过近1O年的发展,C语言克服了产生代码过长、运行速度较慢的缺点,并且由于C语言在开发速度、软件质量、结构化、可维护性等方面有着汇编语言无法比拟的优势,从而得到日益广泛的应用。Keil C51是德国Keil公司开发的单片机C语言编译系统.该软件功能完备,是目前国内技术开发人员使用最为广泛的语言之一。
在实际工作中发现,用C语言编写的对同一端口进行连续读取的程序,经Keil C51编译后执行结果往往会出错,现以8051单片机读取12位A/D MAX197为例,如图1所示。

图1中,P1.1口用于读取转换完成时A/D发出的中断信号,P1.0对读取高4位或低8位进行选择。现假定A/D 的地址为8000H,启动CH0端口工作字为40H。为得到相应的高、低位转换数据,用C语言编程如下。
#include
unsigned char xdata MAX197 _at_ 0x8000;
sbit MAXINT= P1^1;
sbit MAXHBEN= P1^0;
……
void main()
{unsigned char up4,down8;//设置接收数据的2个变量
……
MAX197= 0X40;//启动A/D CH0口进行转换
while(MAXINT) //等待转换完成
{};
P1.0=0; //读取低8位
down8=MAX197;
P1.0=1; //读取高4位
up4=MAX197;
}
上述的程序并没有如所希望的那样分别得到高、低位数据,实际上在down8和up4中得到的都是低8位的数据。下面是上段C语言经编译后的部分代码。
41: //取低8位
42: MAXHBEN=0;
C:0x000C C290 CLR MAXHBEN(0x90.0)
43: down8=MAX197;
C:0x000E 908000 MOV DPTR,#MAX197(0x8000)
C:0x0011 E0 MOVX A,@DPTR
C:0x0012 F509 MOV 0x09,A
44: //取高4位
45: MAXHBEN=1
C:0x0014 D290 SETB MAXHBEN(0x90.0)
46: up4=MAX197;
47:
48:
C:0x0016 F5O8 MOV 0x08,A //0x08为up4
49: }
通过分析上面的程序会发现,C编译出来的程序并没有在P1.0置为高电位后再去读一次端口,而只是直接将上次读来的结果直接送给高4位变量。如果先读高位后读低位,结果会得到两个高4位数据。为证实这一点,将4条连续重复读取一个外部端口的C语言语句放在一起,编译后发现只有第一条语句被编译执行。也就是说,Keil C51对于连续重复读取同一个端口地址,在编译时进行了“特殊”处理,这一点是十分值得注意的。那么对于确实需要对同一端口进行连续读取的情况应该如何处理呢?下面介绍两种方法以供参考。

第一种方法:加延时。
延时不宜太长,特别是在对转换速度要求较高时。首先写一个延时函数:
void delay()
{unsigned char i;
for (i=0,i<=1;i++);
}
然后将延时程序放在上面两次读取的中间位置。
P1.0=0; //读取低8位
down8=MAX197:
delay();
P1.0=1; //读取高4位
up4=MAX197;
编译后的结果如下:
49: //取低8位
50: MAXHBEN=0:
C:0x000C C29O CLR MAXHBEN(0x90.0)
51: down8=MAX197;
C:0x000E 908000 MOV DPTR,#MAX197(0x8000)
C:0x0011 E0 MOVX A,@DPTR
C:0x0012 F509 MOV 0x09,A
52: delay();
53: //取高4位
C:0x0014 120029 LCALL delay(C:0029)
54: MAXHBEN = 1;
C:0x0017 D290 SETB MAXHBEN(0x90.0)
55:up4=MAX197;
56:
57:
C:0x0019 E0 MOVX A,@DPTR
C:0x001A F508 MOV 0x08,A
58: }
可以看出,在将P1.0置高后,又对端口进行了一次读写,程序正常并得到了高4位。

第二种方法:另设指针。
void main()
{unsigned char up4,down8; //设置接收数据的2个变量
unsinged char xdata *pt1;
pt1=0x8000;
……
MAX197=0X40; //启动A/D CH0口进行转换
while(MAXINT) //等待转换完成
{};
P1.0=0; //读取低8位
down8= MAX197:
P1.0=1; //读取高4位
up4=*pt1:
……
编译的结果如下:
42: //取低8位
43: MAXHBEN=0;
C:0x0010 C290 CLR MAXHBEN(0x90.0)
44: down8=MAX197;
C:0x0012 908000 MOV DPTR,#MAX197(0x8000)
C:0x0015 E0 M0VX A,@DPTR
C:0x0016 F509 MOV 0x09,A
45: MAXHBEN=1:
46: //取高4位
47:
C:0x0018 D290 SETB MAXHBEN(0x90.0)
48: up4=*pt1:
49:
50:
C:0x001A 8F82 MOV DPL(0x82),R7
C:0x001C 8E83 MOV DPH (0x83),R6
C:0x001E E0 MOVX A,@DPTR
C:0x001F F508 MOV 0x08,A
上述两种方法都很好地解决了Keil C51中不能处理对一个端口进行连续读写的问题,但如果对转换速度要求特别高,建议最好使用第二种方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭