当前位置:首页 > 单片机 > 单片机
[导读]一、Cortex M3的GPIO口特性 在介绍GPIO口功能前,有必要先说明一下M3的结构框图,这样能够更好理解总线结构和GPIO所处的位置。Cortex M3结构框图 从图中可以看出,GPIO口都是接在APB总线上的,而且M3具有两个AHB到

一、Cortex M3的GPIO口特性
在介绍GPIO口功能前,有必要先说明一下M3的结构框图,这样能够更好理解总线结构和GPIO所处的位置。

Cortex M3结构框图

从图中可以看出,GPIO口都是接在APB总线上的,而且M3具有两个AHB到APB桥,GPIO则直接接在AHB矩阵上,这样可以减少CPU和DMA控制器之间的竞争冲入,获得较高性能。APB总线桥配置为写缓冲区,使得CPU或DMA控制器可直接操作APB外设,而无需等待总线写操作完成。

M3数字I/O功能:
高速GPIO口,其寄存器被移到外设AHB总线,可以字节,半字和字寻址。
位电平置位和清零寄存器允许单指令置位和清零一个端口的任意位。
所有GPIO口寄存器支持M3位带操作。
整个端口值可以用一条指令写入。
GPIO口寄存器可由GPDMA控制器进行访问,可以进行DMA数据操作,使之与DMA请求同步。
单个I/O口方向可以控制。
所有I/O口在复位后默认作为上拉输入。(Why?因为微控制器连接了很多设备,如果复位后作为输出,则由于控制器电平状态不定,可能会导致外围设备产生动作,从而产生不利影响,故复位后一半都作为输入状态。)
M3可产生中断的数字端口:
PORT0 和 PORT2 端口的每个引脚都可以提供中断功能;
每个端口上的中断可被编程为上升沿、下降沿或边沿产生中断;
边沿检测是异步的,因此可以在没有时钟的情况下(例如掉电模式)操作。使用这种特性,就无需电平触发中断;
可掉电唤醒;
寄存器为软件提供挂起的上升沿中断、挂起的下降沿中断和整个挂起的 GPIO中断;
GPIO0 和 GPIO2 中断与外部中断 3 事件共用相同的 NVIC 通道。
二、GPIO口的寄存器描述
Cortex M3引脚的寄存器描述:


PINMODEx表示引脚模式选择寄存器,在使用前要配置好。

引脚模式选择寄存器位

PINMODEx

功能

复位后的值

00

引脚使能上拉电阻

00

01

中继模式

10

引脚无片内上拉或下拉电阻

11

引脚使能下拉电阻


中继模式说明:当引脚处于逻辑高电平,中继模式能使能上拉电阻;当引脚处于逻辑低电平时,中继模式会使能下拉电阻,这样当引脚配置为输入且没有外部驱动时,能够保持上一个已知状态。
PINSELx:功能选择寄存器。用来设定PORT引脚的功能,当PINSELx各位为0时,才用作GPIO
端口。
FIOxDIR:GPIO口方向寄存器,单独控制每个端口管脚的方向,可作为字节(8位),半字(16位)和字长(32位)的数据进行访问。
FIOxMASK:屏蔽寄存器。任何写、读的操作只在该寄存器对应位为“0“时才有效。

FIOxPIN:管脚值寄存器。只要管脚不配置为ADC,其他所有方式都可以从该位读出端口当前的实际状态。注:如果读FIOPIN寄存器,那么不管物理引脚的状态如何,在 FIOMASK
寄存器中被“1”屏蔽的位将始终读出0。

FIOxSET:输出引脚的状态。写 1 使相应的端口引脚产生高电平。写 0 没有影响。读该寄存器返回端口输出寄存器的当前内容。只可以更改 FIOMASK 中为 0 的位,即非屏蔽位。

FIOxCLR:控制输出引脚的状态。写 1 使相应的端口引脚产生低电平。写 0 没有影响。只可以更改 FIOMASK 中为 0 的位,即非屏蔽位。
2.1GPIO端口方向寄存器FIOxDIR(FIO0DIR??FIO4DIR- 0x2009 C000??0x2009 C080)
当引脚被配置为 GPIO功能时,该寄存器可用来控制引脚的方向。勿必根据引脚功能来设置每个引脚的方向。
注:GPIO引脚 P0.29和P0.30 与USB D+/-引脚共用,并且具有相同的方向。如果FP0DIR位29或位30在FIO0DIR寄存器中被配置为零,则P0.29 和P0.30都为输入。如果FP0DIR位29和位30被配置为1,则P0.29和P0.30都为输出。

高速GPIO端口方向寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0DIR

FP1DIR

FP2DIR

FP3DIR

FP4DIR

0

1

控制的引脚为输入引脚

控制的引脚为输出引脚

0


字和半字的操作基本类似,只是可以通过8位寄存器或者16位的寄存器分别控制方向而已,这里不再解释,请参看《深入浅出Cortex-M3 LPC1700》.

2.2GPIO端口输出设置寄存器FIOxSET(FIO0SET??FIO7SET - 0x2009 C018??0x2009 C098)
当引脚在输出模式中被配置为 GPIO 时,该寄存器在端口引脚产生高电平输出。向该寄存器的某些位写入“1”时,对应的引脚产生高电平。写入“0”无效。如果需要引脚输出低电平或第二种功能,那么写 1 到 FIOxSET 的相应位无效。 读FIOxSET 寄存器返回该寄存器的值,该值由前一次对 FIOxSET 和 FIOxCLR(或前面提到的 FIOxPIN)的写操作确定,它不反映任何外部环境对 I/O引脚的影响。 通过 FIOxSET 寄存器访问的端口引脚受到 FIOxMASK 寄存器相应位的限制。

高速GPIO端口输出设置寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0SET

FP1SET

FP2SET

FP3SET

FP4SET

0

1

控制的引脚输出不改变
控制的引脚输出被设为高电平

0


2.3GPIO端口输出清零寄存器FIOxCLR(FIO0CLR??FIO07CLR - 0x2009 C01C??0x2009 C09C)
当引脚在输出模式中被配置为 GPIO 时,该寄存器在端口引脚产生低电平输出。向某些位写入“1”会使相应的引脚产生低电平,同时清零 FIOxSET 寄存器的相应位。写入“0”无效。如果引脚被配置为输入或其它功能,那么写 FIOxCLR 对引脚没有影响。 通过FIOxCLR寄存器访问的端口引脚受到FIOxMASK寄存器相应位的限制.

高速GPIO端口输出清零寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0CLR

FP1CLR

FP2CLR

FP3CLR

FP4CLR

0

1

控制的引脚输出不改变
控制的引脚输出被设为低电平

0


2.4GPIO端口引脚值寄存器FIOxPIN(FIO0PIN??FIO7PIN- 0x2009 C014??0x2009 C094)
该寄存器提供了端口引脚的值,可配置这些值来执行仅为数字的功能。该寄存器将给出引脚的当前逻辑值,而不管引脚是否配置为输入或输出,或作为 GPIO或作为其它可选的数字功能。
例如,特殊的端口引脚可能具有 GPIO输入、GPIO 输出、UART 接收和 PWM 输出等可选功能。无论该引脚配置成何种功能,都可以从相应的 FIOxPIN 寄存器中读出其当前的逻辑状态。 如果引脚配置为模拟功能,当选择了模拟配置时,引脚状态不能被读出。将引脚选择用作A/D输入会断开与引脚数字部分的连接。在这种情况下,从 FIOxPIN 寄存器中读出的引脚值无效。
写 FIOxPIN 寄存器时, FIOxPIN 寄存器的值会保存到端口输出寄存器,而无需使用 FIOxSET和 FIOxCLR寄存器来获得整个写入值。由于这种特性影响整个端口,因此在应用中时要小心。 通过 FIOxPIN 寄存器访问的端口引脚受到 FIOxMASK 寄存器相应位的限制。 只有在屏蔽寄存器中用0 屏蔽的引脚与高速 GPIO 端口引脚值寄存器的当前内容相互关联。

高速GPIO端口引脚值寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0VAL

FP1VAL

FP2VAL

FP3VAL

FP4VAL

0

1

控制的引脚输出设为低电平
控制的引脚输出设为高电平

0


2.5高速GPIO端口屏蔽寄存器FIOxMASK (FIO0MASK??FIO7MASK - 0x2009 C010??0x2009 C090)
该寄存器用来屏蔽某些端口引脚,被屏蔽的引脚将无法通过 FIOxPIN、 FIOxSET 或 FIOxCLR寄存器写访问。当读FIOxPIN 寄存器时,屏蔽寄存器还将过滤相应端口的内容。
通过读或写访问,该寄存器中为“0”的位使能相应物理引脚的访问。如果该寄存器中的位为“1”,则相应位将不会通过写访问改变,并且读操作时将不会在更新的 FIOxPIN 寄存器中反映出来。

高速GPIO端口引脚值寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0VAL

FP1VAL

FP2VAL

FP3VAL

FP4VAL

0

1

控制的引脚输出设为低电平
控制的引脚输出设为高电平

0


2.1GPIO端口方向寄存器FIOxDIR(FIO0DIR??FIO4DIR- 0x2009 C000??0x2009 C080)
当引脚被配置为 GPIO功能时,该寄存器可用来控制引脚的方向。勿必根据引脚功能来设置每个引脚的方向。
注:GPIO引脚 P0.29和P0.30 与USB D+/-引脚共用,并且具有相同的方向。如果FP0DIR位29或位30在FIO0DIR寄存器中被配置为零,则P0.29 和P0.30都为输入。如果FP0DIR位29和位30被配置为1,则P0.29和P0.30都为输出。

高速GPIO端口方向寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0DIR

FP1DIR

FP2DIR

FP3DIR

FP4DIR

0

1

控制的引脚为输入引脚
控制的引脚为输出引脚

0


字和半字的操作基本类似,只是可以通过8位寄存器或者16位的寄存器分别控制方向而已,这里不再解释,请参看《深入浅出Cortex-M3 LPC1700》.

2.2GPIO端口输出设置寄存器FIOxSET(FIO0SET??FIO7SET - 0x2009 C018??0x2009 C098)
当引脚在输出模式中被配置为 GPIO 时,该寄存器在端口引脚产生高电平输出。向该寄存器的某些位写入“1”时,对应的引脚产生高电平。写入“0”无效。如果需要引脚输出低电平或第二种功能,那么写 1 到 FIOxSET 的相应位无效。 读FIOxSET 寄存器返回该寄存器的值,该值由前一次对 FIOxSET 和 FIOxCLR(或前面提到的 FIOxPIN)的写操作确定,它不反映任何外部环境对 I/O引脚的影响。 通过 FIOxSET 寄存器访问的端口引脚受到 FIOxMASK 寄存器相应位的限制。

高速GPIO端口输出设置寄存器位描述

符号

描述

复位值

31:0(字长数据)

FP0SET

FP1SET

FP2SET

FP3SET

FP4SET

0

1

控制的引脚输出不改变
控制的引脚输出被设为高电平

0


2.3GPIO端口输出清零寄存器FIOxCLR(FIO0CLR??FIO07CLR - 0x2009 C01C??0x2009 C09C)
当引脚在输出模式中被配置为 GPIO 时,该寄存器在端口引脚产生低电平输出。向某些位写入“1”会使相应的引脚产生低电平,同时清零 FIOxSET 寄存器的相应位。写入“0”无效。如果引脚被配置为输入或其它功能,那么写 FIOxCLR 对引脚没有影响。 通过FIOxCLR寄存器访问的端口引脚受到FIOxMASK寄存器相应位的限制.

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭