当前位置:首页 > 单片机 > 单片机
[导读]TIM0 查询法使LED一秒闪烁,未使用预分频#include#define uint unsigned int#define uchar unsigned char#define input RA3#define clk RA5#define cs_led RE0__CONFIG(0x3B31);void init();void delay(uint);void w

TIM0 查询法使LED一秒闪烁,未使用预分频

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

if(T0IF==1)//判断中断溢出位是否溢出,TOIF是否溢出和总中断是否开启无关系。

{

T0IF=0;//需要软件清零

intnum1++;

if(intnum1==3906)//一秒钟到了

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

}

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

OPTION=0x08;//使用内部时钟信号,预分频器分配给WDT模块,相当于不给TM0设置预分频,

//一个时钟周期是一秒,当不装初值时,256微秒之后溢出,因为时8位定时器。

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

TIM0 查询法使LED一秒闪烁,使用预分频

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

if(T0IF==1)//判断中断溢出位是否溢出,TOIF是否溢出和总中断是否开启无关系。

{

T0IF=0;//需要软件清零

TMR0=61;//重新给定时器装初值。

intnum1++;

if(intnum1==20)//一秒钟到了

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

}

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

OPTION=0x07;//使用内部时钟信号,预分频器分配给TIM0模块,256分频。

//一个时钟周期是一秒,当不装初值时,256微秒之后溢出,因为时8位定时器。

TMR0=61;//256*Y=50000,=>Y=195,256-195=61,这样就是50ms溢出一次,溢出20次就是1s。

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

TIM0 中断法使LED一秒闪烁,使用预分频

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

if(intnum1==2)//一秒钟到了

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

OPTION=0x07;//使用内部时钟信号,预分频器分配给TIM0模块,256分频。

//一个时钟周期是一秒,当不装初值时,256微秒之后溢出,因为时8位定时器。

INTCON=0xa0;//GIE=1,开总中断,T0IE=1,开启T0中断,T0IE是TMR0 溢出中断允许位。

TMR0=61;//256*Y=50000,=>Y=195,256-195=61,这样就是50ms溢出一次,溢出20次就是1s。

}

void interrupt time0()

{

T0IF=0;//由于只开启了TMR0中断,所以不用查询是哪个中断,能进来的肯定是TMR0溢出中断,直接将中断溢出标志位清零,

TMR0=61;

intnum1++;

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

TMR1 中断法TIM0 中断法使LED一秒闪烁,不设置预分频。

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

if(intnum1==20)//一秒钟到了

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

INTCON=0xc0;//GIE=1,开总中断,开启第一外设中断

PIE1=0x01;//开启定时器1的中断

TMR1L=(65536-50000)%256;

TMR1H=(65536-50000)/256;//进入一次中断,是50ms,

T1CON=0x01;//不设置预分频,关闭定时器1晶振使能控制位,与外部时钟同步,选择内部时钟,使能定时器1,

}

void interrupt time1()

{

TMR1IF=0;//将中断溢出标志位清零,

TMR1L=(65536-50000)%256;

TMR1H=(65536-50000)/256;

intnum1++;

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

TMR1 中断法TIM0 中断法使LED400ms闪烁,设置预分频

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

/* if(intnum1==20)//一秒钟到了

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}*/

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

INTCON=0xc0;//GIE=1,开总中断,开启第一外设中断

PIE1=0x01;//开启定时器1的中断

TMR1L=(65536-50000)%256;

TMR1H=(65536-50000)/256;//如果不设置预分频,进入一次中断,是50ms,现在设置8倍预分频,进入一次中断是400ms。

T1CON=0x31;//设置8倍预分频,关闭定时器1晶振使能控制位,与外部时钟同步,选择内部时钟,使能定时器1,

}

void interrupt time1()

{

TMR1IF=0;//将中断溢出标志位清零,

TMR1L=(65536-50000)%256;

TMR1H=(65536-50000)/256;

//intnum1++;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

TMR2预分频 后分频

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

if(intnum1==1000)//本来预分频1:1时是200ms到了,现在预分频是4.所以是200*4 ms到了,由于后分频1:2,所以是200*4*2 ms

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

INTCON=0xc0;//GIE=1,开总中断,开启第一外设中断外围功能模块中断

PIE1=0x02;//开启定时器2的中断

TMR2=56;

T2CON=0x0d;//预分频1:4,使能tmr2计数允许/禁止控制位,预分频1:4后分频1:2,

}

void interrupt time1()

{

TMR2IF=0;//将中断溢出标志位清零,

TMR2=56;

intnum1++;

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

TMR2预分频 后分频 周期寄存器

#include

#define uint unsigned int

#define uchar unsigned char

#define input RA3

#define clk RA5

#define cs_led RE0

__CONFIG(0x3B31);

void init();

void delay(uint);

void write_164(uchar);

uint intnum1,intnum2;

void main()

{

init();

while(1)

{

if(intnum1==1000)//本来预分频1:1时是100ms到了,现在预分频是4.所以是100*4 ms到了,由于后分频1:2,所以是100*4*2 ms

{

intnum1=0;

intnum2++;

cs_led=0;

if(intnum2==1)

write_164(0xfd);

if(intnum2==2)

{

intnum2=0;

write_164(0xff);

}

}

}

}

void init()

{

TRISA=0b11010111;

TRISE=0b11111110;

INTCON=0xc0;//GIE=1,开总中断,开启第一外设中断外围功能模块中断

PIE1=0x02;//开启定时器2的中断

TMR2=0;

PR2=100;//周期寄存器

T2CON=0x0d;//预分频1:4,使能tmr2计数允许/禁止控制位,预分频1:4后分频1:2,

}

void interrupt time1()

{

TMR2IF=0;//将中断溢出标志位清零,

//TMR2=56;

intnum1++;

}

void delay(uint x)

{

uint a,b;

for(a=x;a>0;a--)

for(b=110;b>0;b--);

}

void write_164(uchar dt)

{

uchar i;

for(i=0;i<8;i++)

{

clk=0;

if(dt&0x80)

input=1;

else

input=0;

dt=dt<<1;

clk=1;

}

}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

Holtek新推出BS67F2432具备触控按键、高精准度HIRC与LCD驱动器Flash MCU。主要特色为内建高精准度4MHz HIRC振荡电路、8路触控按键及最大支持4COM×15SEG LCD驱动器。适用于触控接...

关键字: MCU LCD驱动器 定时器

Holtek持续扩展Touch A/D Flash MCU产品,新增系列成员BS86C12CA,延续优良抗干扰特性,提供丰富的定时器资源并支持LXT振荡器。引脚与BS86C08C及BS86D12C相容,具高性价比,适合需...

关键字: MCU LXT振荡器 定时器

采用MCU(微控制器单元)模块实现定时器的设计是通过利用MCU内部的定时器/计数器资源来实现的。定时器是MCU中的一个重要功能模块,它可以在特定的时间间隔内执行特定的操作,如产生中断、更新定时器值、触发其他设备等。

关键字: mcu模块 定时器

单片机的外设是指与单片机核心处理部分相连的附加硬件模块,它们能够扩展单片机的功能和能力。这些外设包括各种模块和接口,用于处理特定的任务或实现特定的功能。

关键字: 单片机 定时器

PIC单片机是基于RISC系统结构的单片机,最初的设计是支持PDP(编程数据处理器)计算机。大量的操作可以用来控制外围设备。PIC单片机比微控制器具有更快的程序执行能力。它是由微芯片技术公司于1889年发明的,是一种8位...

关键字: PIC单片机 定时器 中断

pic单片机应用很多,生活中到处都有pic单片机的身影。小编个人也是从事pic单片机开发的人员之一,对于pic单片机有一定的理解。今天,小编将带领大家一起看一下pic单片所具备的8大优势。

关键字: pic 单片机 寄存器

外部输入、输出继电器、内部继电器、定时器、计数器等器件的接点可多次重复使用,无需用复杂的程序结构来减少接点的使用次数。

关键字: plc编程 定时器 计数器

单片机可以通过“定时/计数模式选择位C/T”令定时/计数器工作于定时或计数模式下,也可通过“工作方式选择位M1M0”设定其工作方式。C/T和M1M0等与定时/计数器有关的位在寄存器TCON或TMOD中,见表4-8和表4-...

关键字: 寄存器 计数器 定时器

在家电产品和工业应用系统中,定时和计数是两种常用的功能,如:微波炉加热计时和流水线上产品数目统计等。MCS-51单片机内部集成的两个可编程定时/计数器T0和T1使用灵活、方便,在仪器仪表等工业产品中应用广泛。

关键字: 计数器 定时器 单片机

TMOD 的地址是 89H ,它不能位寻址 ,它里面的内容被称为方式字,设置时一次写入,其各位的定义如图 6.2 所示。高 4 位用于定时器 T1 ,低 4 位用于定时器 T0 。

关键字: 定时器 计数器 单片机
关闭
关闭