当前位置:首页 > 单片机 > 单片机
[导读]试验芯片:Microchip PIC 18F4550集成开发环境:MPLAB IDE v8.53编译器:Microchip C18PIC18系列单片机是美国微芯公司(Microchip)8位单片机系列中的高档系列,其任一I/O引脚允许的最大灌电流或最大拉电流达25mA,可

试验芯片:Microchip PIC 18F4550

集成开发环境:MPLAB IDE v8.53

编译器:Microchip C18

PIC18系列单片机是美国微芯公司(Microchip)8位单片机系列中的高档系列,其任一I/O引脚允许的最大灌电流或最大拉电流达25mA,可以直接驱动LED和继电器。PORTA、PORTB和PORTE的最大灌电流或最大拉电流总和为200mA,PORTC和PORTD的最大灌电流或最大拉电流总和为200mA,PORTF和PORTG的最大灌电流或最大拉电流总和为100mA(注:PIC18F4550没有这两个端口)。

单片机和外设的交互都是通过I/O端口进行,每个I/O端口均有三个操作寄存器:

1、TRISx———数据方向寄存器

用来控制I/O引脚的方向,即用来控制PORTx是输入还是输出。

2、PORTx——— 端口寄存器

用来锁存输出数据。当读PORTx时,器件直接读I/O引脚电平(而不是锁存值)。

3、LATx——— 输出数据锁存器

写端口就是写该锁存器(LATx)。数据锁存器也可以直接读写。如果外设没有使用该引脚,并且TRISx位配置该引脚为输出,则将锁存器内的数据输出到引脚。

在复位状态下,TRISx的复位值为0xff,即TRISx寄存器的8个位(D0 ~ D7)的值均为1。此时相应的PORTx引脚被定义为输入,相应的输出驱动器呈现高阻状态。设置为0时表示相应的引脚定义为输出。

这里应注意的是写PORT就是写LAT,但读PORT和读LAT不同。读PORT读的是引脚的状态,无论该引脚设置为输入引脚还是输出引脚。而读LAT得到的是输出数据锁存器的存储值,读LAT得到的值可能和读PORT得到的值存在不同。

在Microchip C18中,I/O端口三个操作寄存器可以按位(bit)操作,也可以按字节(byte)操作。

如端口B的方向寄存器用TRISB(或DDRB)表示,某一位用TRISBbits.TRISB0(或DDRB bits.RB0)表示。字节用TRISB(或DDRB)表示。

如端口B的PORT寄存器用PORTB表示,某一位用PORTBbits.RB0表示。字节用PORTB表示。

如端口B的输出数据锁存器用LATB表示,某一位用LATBbits.LATB0表示。字节用LATB表示。

由于芯片复位后,LATx(PORTx)锁存器的值是随机的,为了排除I/O引脚电平出现毛刺的可能性,在初始化端口时,首先初始化该PORT的数据锁存器(LAT或PORT寄存器),然后再初始化数据方向寄存器TRIS。

下面用一个实例说明一下具体应用,下图PIC18F4550与电源、晶振和发光二极管组成一个最简单的8位单片机系统,要求同时点亮8个发光二极管。

首先可以选择按位操作的方法实现。不难看出,按位操作实际不是真正实现同时点亮与PORTB相连的8个发光二极管,只是发光二极管发光的延时效应掩盖了依次点亮的事实,使得最终效果达到了同时点亮。以下是按位操作方式的实现代码。

#include

void main(void)

{

  PORTBbits.RB0=1;

  TRISBbits.TRISB0=0;//点亮第1个LED

  PORTBbits.RB1=1;

  TRISBbits.TRISB1=0; //点亮第2个LED

  PORTBbits.RB2=1;

  TRISBbits.TRISB2=0; //点亮第3个LED

  PORTBbits.RB3=1;

  TRISBbits.TRISB3=0; //点亮第4个LED

  PORTBbits.RB4=1;

  TRISBbits.TRISB4=0; //点亮第5个LED

  PORTBbits.RB5=1;

  TRISBbits.TRISB5=0; //点亮第6个LED

  PORTBbits.RB6=1;

  TRISBbits.TRISB6=0; //点亮第7个LED

  PORTBbits.RB7=1;

  TRISBbits.TRISB7=0; //点亮第8个LED

  while(1);

}

其次可以按字节操作来实现,代码比按位操作要简单很多,而且真正实现了同时点亮的要求。以下是按字节操作方式的实现代码。

#include

void main(void)

{

  PORTB=0xff;

  TRISB=0x00;//点亮8个LED

  while(1);

}


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭