当前位置:首页 > 单片机 > 单片机
[导读]随着环境的污染和能源的紧张,电动自行车以无废气污染,无噪音,利用电能和使用方便等优点,越来越受到人们的喜爱,成为生活中的代步交通工具。本文介绍采用美国公司SILICon laboratories(Silabs)的高速SoC型C8051F313单片机设计的一种无刷直流电机调速控制系统。该系统充分利用C8051F313的片上资源,设计方案电路简单,需要的外围元件少,控制器的整体成本低,性能好。

前 言

随着环境的污染和能源的紧张,电动自行车以无废气污染,无噪音,利用电能和使用方便等优点,越来越受到人们的喜爱,成为生活中的代步交通工具。本文介绍采用美国公司SILICon laboratories(Silabs)的高速SoC型C8051F313单片机设计的一种无刷直流电机调速控制系统。该系统充分利用C8051F313的片上资源,设计方案电路简单,需要的外围元件少,控制器的整体成本低,性能好。

C8051F313

C8051F313属于Silabs的高速SOC型单片机C8051F系列。C8051F系列单片机集成度高,完全兼容传统的8051单片机内核和指令系统,但其各方面的性能都远远超越了传统的8051单片机。由于采用了“流水线”结构方式处理指令,70%的指令的执行时间为1个或2个系统时钟,突破了传统的8051单片机运行效率低的弱点,特别是它执行乘法指令只要4个系统时钟,执行除法指令只要8个系统时钟。另外C8051F系列单片机片上集成了丰富的外设,极大地降低了对外围元器件的需求:模拟多路选择器、可编程增益放大器、ADC、DAC、电压比较器、电压基准、温度传感器、SMBus(I2C)、增强型UART、SPI、可编程计数/定时器阵列(PCA)、电源监视器、看门狗定时器(WDT)、时钟振荡器等。另外还有片上的FLASH程序存储器、RAM和XRAM。在编程语言上,支持汇编和C编程。

系统硬件设计

整个控制系统主要包括转子位置检测电路、测速电路、调速电路、MOSFET全桥驱动电路、限流电路等,图1是控制系统框图。直流电源通过MOSFET电路向电动机定子绕组供电;转子位置检测电路检测转子的位置,并根据转子的位置信号来控制MOSFET的导通和截止,从而实现电子换向;测速电路检测电机的转速,调速电路根据测速电路的检测结果,动态地调整电机的转速(调速)。本设计可根据需要设计成60o或120o电角度换相。

转子位置检测电路和测速电路

本设计中的无刷直流电动机为三相无刷直流电机,3个霍尔位置传感器的空间间距为120o。3个霍尔传感器的输出H1、H2、H3分别直接接到C8051F313的PCA(可编程计数器/定时器阵列)的三个捕捉/比较模块:CEX0、CEX1和CEX2。捕捉/比较模块可以对霍尔信号的上升沿和下降沿进行捕捉,并产生中断。这种检测无刷电机转子位置的方法比使用A/D转换或使用比较器的方法更具优越性。外围电路简单,几乎不需要任何外围元器件,实时性又非常高,可靠快速地对霍尔信号进行捕捉。同时使用一个定时器对中断的间隔进行计时。这个时间就反映了电机的转速,软件上通过一定的算法处理,就可以得到电机此时的转速。这种方法得到的电机转速比较真实地反映了电机的实际转速。

MOSFET全桥驱动电路

这部分电路实际上完成电机换相驱动和调速的功能。C8051F313根据转子位置检测电路的检测结果,对无刷直流电机进行实时的换相驱动,同时根据转速检测电路检测到的转速对无刷直流电机进行调速。本设计采用PWM方式对电枢电压进行控制,实现调速。

图2中的Ua为直流无刷电机电枢两端的电压,PWM的周期为T(为一个固定值),改变PWM的占空比,即改变T1的时间,那么直流无刷电机电枢两端的平均电压发生改变,电机的转速也就发生了变化,实现了调速的目的。Ua的计算公式为:

Ua = (T1/(T1 + T2))× Ud

这就是直流无刷电机电枢电压的PWM调速的计算公式。按照相反的次序给直流无刷电机通电,就可以使用直流无刷电机的反转。

在本设计中使用C8051F313的PCA(可编程计数器/定时器阵列)的一个捕捉/比较模块CEX3来产生PWM,并且根据换相和调速的实际需要,通过Crossbar(数字交叉开关)动态地将1路PWM波分时送到到MOSFET全桥的3个下管,进行调速。

软件设计

由于C8051F313兼容传统的8051单片机,汇编指令和传统的8051单片机指令一样,同时支持目前国内使用最广的Keil C仿真软件,只要有过51单片机编程经验或使用过Keil C的人,就可以很轻松的上手C8051F313的编程工作,而不需要事前投入大量时间进行学习。

本设计使用C语言编程,程序可移植性强。其程序流程图如图3所示。

结语

本设计充分利用了C8051F313片上的资源,特别是PCA的资源。使用PCA的3个捕捉/比较模块巧妙地实现了直流无刷电机转子位置的检测;一个捕捉/比较模块产生一路PWM波实时动态地分配到MOSFET桥的三个下管进行调速,同时也实现了直流无刷电机转速的准确测量。整个系统实时性强,可靠性高,性能好。由于C8051F系列单片机片上集成了丰富的外设,极大地降低了对外围元器件的需求,整个系统成本比较低。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭