当前位置:首页 > 单片机 > 单片机
[导读]采用串行总线技术可以使系统的硬件设计大大简化,系统的体积减小,可靠性提高,同时系统更容易更改和扩充。常用的串行扩展总线有:I2c总线,单总线,SPI总线,以及microwire、Plus等等

采用串行总线技术可以使系统的硬件设计大大简化,系统的体积减小,可靠性提高,同时系统更容易更改和扩充

常用的串行扩展总线有:I2c总线,单总线,SPI总线,以及microwire、Plus等等

I2c总线只有两根双向信号线,一根是数据线SDA,另一根是时钟线SCL

 

I2c总线通过上拉电阻接正电源。因此I2C总线的设备都要接上拉电阻

当总线闲置的时候,两根线均为高电平,连接到总线上的任何一个器件输出的低电平,都将使得总线得到信号变低,及各个器件的SDA和SCL都是线与的关系

每个接入到I2C总线都有唯一的地址,主机与其他器件间的数据传送可以是由主机发送数据到其他器件,这时主机即是发送器,由总线上接收数据的器件称为是接收器。

在多主机系统中,可能同时由几个主机企图启动总线传送数据,为了避免混乱,I2C总线要通过总线仲裁,已决定由哪台主机控制总线

数据位的有效性

I2C总线进行数据传送时,时钟信号为高电平期间,数据线上的数据必须保持稳定,只有时钟线上的信号为低电平期间,数据线上的高电平和低电平状态才允许变化

 

起始信号和终止信号

SCL线为高电平期间,SDA线由高电平向低电平的变化表示起始信号,SCL线为高电平期间,SDA线由低电平向高电平变化表示终止信号

 

数据传送的格式

(1)字节传送与应答

每一个字节必须保证是8位长度,数据传送时,先传送的是最高位(MSB),每一个被传送的字节后面都必须跟随一位应答位,即(一帧共有9位),应答信号由从机发送给主机

 

每次数据传送总是由主机产生的终止信号结束,但是若主机希望继续占用总线进行新的数据传送,则可以不产生终止信号,马上再次发出起始信号对另一个从机进行寻址

在总线的一个数据传上过程中,可以有一下几种传送方式的组合方式

a,主机向从机发送数据,数据传送的方向在整个传送过程中不变

 

A表示应答,A非表示非应答,s表示其实信号,p表示终止信号

主机发送地址时,总线上的每一个从机都将这7位地址码与自己的地址进行比较,如果相同,则认为自己正在被主机寻址,根据R/T位将自己确定为发送器或接收器

从机地址由固定部分和可编程部分组成,可编程的部分决定了可接入总线该器件的最大数目。

 

由操作时序可知要进行必要的延时

起始操作示例代码:

void T2CStart(void)

{

SDA = 1;

SomeNop();//大于微秒级别

SCL = 1;

SomeNop();

SDA = 0;

SomeNop();

}

终止指令:

void I2CStop(void)

{

SDA = 0;//data由0变到1为终止指令

SomeNop();

SCL = 1;

SomeNop();

SDA = 1;

SomeNop();

}

I2C总线扩展

串行E2PROM的扩展

(2)写入过程:AT24CEEPROM的固定地址为1010,A2,A1A0引脚接入高低电平可以得到确定的3位编码,形成的7位编码即为该器件的地址码

单片机进行写操作的时候,首先

发送该器件的7位地址吗和写方向的方向码0,发送完以后释放SDA线并在SCL线上产生第九个时钟信号,被选中的存储器再确认自己的地址后,在SDA上产生一个应答信号作为响应

,单片机接收到信号就可以传送数据了

传送数据时,单片机首先发送一个字节的被写入器件的存储区的首地址,收到存储器器件的应答后,单片机就逐个发送各个数据的字节,但是每次发送一个字节后都要等待应答

收到每个字节的地址后,芯片上的地址会自动加一

写入n个字节的数据格式

 

读出过程

单片机首先发送该器件的7位地址码和写方向位0(伪写),发送完后释放SDA线并在SCL线上产生9个时钟信号,被选中的存储器器件在确认自己的地址之后,在SDA上产生一个应答信号作为回应

然后在发送一个字节的要读出存储去的首地址,收到应答,单片机要重复一次起始信号并发出器件地址的读方向位(1),收到器件应答就可以读出字节,每次读出一个字节,单片机都要回复一个应答信号,但最后读出一个字节,单片机应返回非应答信号(高电平)并发出终止信号以结束读出操作

 

示例代码:

#include

#define uchar unsigned char

#define uint unsigned int

sbit sda = P2^3;

sbit scl = P2^2;

sbit wp = P2^1;

void delay()//微妙级别的延时函数

{;;}

void start()//开始信号

{

sda = 1;

delay();

scl = 1;

delay();

sda = 0;

delay();

}

void stop()//停止信号

{

sda = 0;

delay();

scl = 1;

delay();

sda = 1;

delay();

}

void respons()//应答信号

{

uchar i;

scl = 1;

delay();

while((sda ==1)&&(i<250))//等到第九个时钟周期的时候,还没有变为0,

//那么scl将自动的变为0,表示收到信号

{

i++;

}

scl = 0;

}

void init()

{

sda = 1;

scl = 1;//把线全部释放

}

void write_byte(uchar date)

{

uchar i,temp;

temp = date;

scl = 0;

delay();

for(i = 0;i<8;i++)//写8次

{

temp = temp<<1;//表示将temp左移1位,将最高位移入psw寄存器中的cy位,

//然后将最高位赋值给sda,送走数据

scl = 1;//数据稳定了

delay();

sda = CY;

delay();

scl = 0;//读走数据

delay();

}

sda = 1;//注意养成释放总线的习惯

delay();

}

uchar read_byte()

{

uchar i,j,k;

scl = 0;

delay();

sda = 1;//释放数据总线

delay();

for(i=0;i<8;i++)

{

scl = 1;

delay();

j = sda ;//读取数据

k =(k<<1)|j;

scl = 0;

delay();

}

return k;

}

uchar read_add(uchar address)

{

uchar date;

start();

write_byte(0xa0);//表示写入器件的地址

respons();

write_byte(address);

respons();

start();

write_byte(0xa1);

respons();

date=read_byte();

stop();

return date;

}

void write_add(uchar address,uchar date)

{

init();//初始化信号总线和地址总线

start();//启动信号

write_byte(0xa0);//表示写入器件的地址

respons();

write_byte(address);//表示往这个器件内部的第三个地址处写入地址

respons();

write_byte(date);//表示器件内部的数据

respons();

stop();

}

void delay1(uint z)

{

uint x,y;

for(x= z;x>0;x--)

for(y=110;y>0;y--);

}

void main()

{

init();

write_add(23,125);

delay1(100);

P1=read_add(23);

while(1);

}

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭