当前位置:首页 > 医疗电子 > 医疗电子
[导读]TI公司的手提超声系统DSP解决方案重量大约10磅或不到10磅,可以在没有电池的情况下工作. 手提超声系统广泛应用于ICU病房,急诊室, 麻醉和战场. 手提超声系统采用DSP和SoC来处理电传感器(如照相机,变换器,麦克风等)所产

TI公司的手提超声系统DSP解决方案重量大约10磅或不到10磅,可以在没有电池的情况下工作. 手提超声系统广泛应用于ICU病房,急诊室, 麻醉和战场. 手提超声系统采用DSP和SoC来处理电传感器(如照相机,变换器,麦克风等)所产品生的数字化电信号,一个诊断超声图像系统产生和发送超声波,捕捉反射波并转换成可视的图像.接收到的反射波的信号处理包内插,抽取,数据滤波和重建.可编程的DSP和SoC能实时实现这些复杂的数学运算.本文介绍了超声波系统方框图, 超声波系统的前端处理,中间处理和后端处理,以及由DM648 + DM6446组成的系统框图和由C6455 + OMAP3530组成的系统方框图.此外还介绍了相关处理器和应用处理的主要特性和方框图.

DSPs and SoCs are specially designed single-chip digital microcomputers that process digitized electrical signals generated by electronic sensors (e.g., cameras, transducers, microphones, etc.) that will help to revolutionize the area of diagnostic ultrasound imaging. A diagnostic ultrasound imaging system generates and transmits acoustic waves and captures reflections that are then transformed into visual images. The signal processing on the received acoustic waves include interpolation, decimation, data filtering and reconstruction. Programmable DSPs and SOCs, with architectures designed for implementing complex mathematical algorithms in real-time, can efficiently address all the processing needs of such a system.

TI Digital Signal Processor (DSP) for Portable Ultrasound

Portable ultrasound systems are considered to be ultrasound systems that weigh around 10 lbs or less, and can run on batteries. They began to appear in the market place in the late 90s and have seen a remarkable growth in sales in the recent years. This growth has been a direct result of their applicability in areas such as ICUs, emergency medicine, regional anesthesia and battlefield.

DSPs and SoCs are specially designed single-chip digital microcomputers that process digitized electrical signals generated by electronic sensors (e.g., cameras, transducers, microphones, etc.) that will help to revolutionize the area of diagnostic ultrasound imaging. A diagnostic ultrasound imaging system generates and transmits acoustic waves and captures reflections that are then transformed into visual images. The signal processing on the received acoustic waves include interpolation, decimation, data filtering and reconstruction. Programmable DSPs and SOCs, with architectures designed for implementing complex mathematical algorithms in real-time, can efficiently address all the processing needs of such a system.

The following information introduces the concept of a complete portable ultrasound system solution based on Texas Instruments (TI) semiconductor components, development tools, and software solutions.

Additionally, the various concepts that outline the inherent advantages of a DSP and a SoC in a portable ultrasound system - efficient signal processing, lower power consumption and lower cost, all leading to better ultrasound diagnostic imaging - will also be covered.

The key driver requirements for a portable ultrasound system are the same with any portable device: size, weight, battery life, cost and performance. OEMs are making trade-offs in these areas, for example, providing just a basic imaging system with less features but with more battery life, (e.g., 8-channel black and white systems vs. more sophisticated 128 channel color systems that would need to be re-charged more often). The size of the portable system varies from laptop sized systems to handhelds. These size limitations are driving the need for more system integration on the supporting SoCs and more automatic image enhancement features due to fewer fine controls.

The requirements for portable systems is also being driven from geographies where the infrastructure is more rural and access to the larger more sophisticated imaging systems is limited, and where clinicians must now take the system to the patient. This makes cost a critical factor as well.

图1.超声波系统方框图

图2.超声波系统前端处理框图

图3.超声波系统中间处理框图

图4.超声波系统后端处理框图

系统框图案例:

1.

System block diagram highlighting the use of TMS320DM648 and TMS320DM6446 for carrying out mid-end, back-end, and system controller functions.

图5.DM648 + DM6446系统框图}

TMS320DM648性能介绍

TMS320DM648 – Well suited for medical imaging applications needing high-performance

processing, TMS320C64x+ DSPs – which include the TMS320DM648 – are the high-performance fixed-point DSPs in the TMS320C6000? DSP platform. DM647/DM648 devices are based on TI’s third-generation high-performance, advanced VelociTI? very long instruction word (VLIW) architecture. With performance of up to 7,200 MIPS at a clock rate of 900 MHz, the C64x+? DSP core offers a high-performance solution to a medical imaging processing challenge.

图6.TMS320DM648方框图

TMS320DM644x性能介绍

TMS320DM644x – Ideal for portable imaging applications, TMS320DM644x digital media processors are highly integrated SoCs that combine the power of an ARM926 processor and a TMS320C64x+? DSP core. The TMS320DM644x enables medical equipment OEMs and ODMs to quickly bring to market products featuring robust operating systems support, rich user interfaces, high processing performance and long battery life through the maximum flexibility of a fully integrated mixed-processor solution.

图7.TMS320DM644x方框图

2.

图8.C6455 + OMAP3530系统方框图

TMS320C6455性能介绍

A TMS320C6455 DSP is used here, with a wider EMIFA bus, which allows higher input data rates. Larger L2 memory and higher operating clock frequency are the major contributors to increased compute capability. In this example, the OMAP3530 plays the dual role of system controller and back-end processor.

The C6455 device is based on the third-generation high-performance, advanced VelociTI? very-long-instruction-word (VLIW) architecture developed by Texas Instruments (TI), making these DSPs an excellent choice for applications including video and telecom infrastructure, imaging/medical, and wireless infrastructure (WI). The C64x+? devices are upward code-compatible from previous devices that are part of the C6000? DSP platform.

Based on 90-nm process technology and with performance of up to 9600 million instructions per second (MIPS) [or 9600 16-bit MMACs per cycle] at a 1.2-GHz clock rate, the C6455 device offers cost-effective solutions to high-performance DSP programming challenges. The C6455 DSP possesses the operational flexibility of high-speed controllers and the numerical capability of array processors.

图9.TMS320C6455方框图

OMAP3515 和 OMAP3530性能介绍

The OMAP3515 and OMAP3530 processors are based on the enhanced OMAP?architecture, which features the superscalar ARM Cortex?-A8 processor, a 2-D/3-D graphics engine, high-performance DSP core and video accelerators to provide the best combination of general-purpose, graphics and video processing in a single chip. Combined with state-of-the-art power management techniques, these devices are well-suited for high-performance portable and handheld imaging applications such as portable ultrasound systems.

图10. OMAP35x方框图

Key Benchmarks

详情请见:

http://focus.ti.com/lit/an/sprab18a/sprab18a.pdf

http://focus.ti.com/lit/wp/sprab12/sprab12.pdf

更多医疗电子信息请关注:21ic医疗电子频道

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭