当前位置:首页 > 医疗电子 > 医疗电子
[导读]1、心电放大器设计方案心电放大器的基本电路组成如图1所示。从体表获得的心电信号经导联输入后,由模拟多路开关进行切换,选中的那一路ECG信号经BiFET LF411型运放构成的前置放大器放大,滤波器滤除其中的高频干扰后

1、心电放大器设计方案

心电放大器的基本电路组成如图1所示。

从体表获得的心电信号经导联输入后,由模拟多路开关进行切换,选中的那一路ECG信号经BiFET LF411型运放构成的前置放大器放大,滤波器滤除其中的高频干扰后,再经一个50Hz陷波器进一步抑制电源干扰,然后通过电平位移进入A/ D转换,从而得到数字化的心电信号。心电放大器模拟部分电路如图2所示。

图2所示电路是在零偏置条件下工作,因此输出信号幅值有正有负,再用加法器将双端信号位移,使之成为单端信号,然后进入AD采样电路。

2、前置放大器

电极采集到的心电信号幅值在50LV~ 5mV,频率在0.05~ 200Hz,需要放大上千倍才能被观察到,并且人体的内阻比较大,因此一个高阻抗、高增益的放大器是准确获取心电信号的关键。针对这一情况我们采用BiFET LF411运放构成多级放大器,且各级增益均衡分配。

BiFET LF411运放是一种高精度、低漂移型差分输入级电路,同时具有FET输入阻抗高、BJT电压增益高的优点,其开环差模电压增益AVO为4*105 ,差模输入电阻Rid可达4*1011欧,共模电压增益AVC为2,共模抑制比KCMR为106dB。

由于体表液体与电极之间可能形成原电池,致使电极之间存在固定的电位差,因此第一级差分放大的增益不能太高,否则容易饱和。电路中A1 ,A2 ,A3构成三运放仪用放大器,它的差模电压增益AVO为40,共模电压增益AVC为7.948*10-6 ,共模抑制比K CMR为134dB,即:

 

电路中选用对称的电阻参数以保证仪用放大器有较好的抗共模干扰能力。为避免输入端开路时放大器出现饱和状态,在两个输入端到地之间分别串接两个20M欧的电阻R11、R12 ,这样还可以提高差模输入阻抗,使其大于107欧。

第二级后级放大采用同相放大电路,该级差模增益为25,从而能保证整个电路差模增益为1000倍左右。

3、滤波器

由于检测信号中存在的主要干扰信号有电极板与人之间的极化电压、50Hz工频干扰、仪器内部噪声和仪器周围电场、磁场、电磁场的干扰等等,要想获得清晰稳定的心电信号,滤波器的设计很关键,特别是50Hz的带阻滤波器尤其重要。其中200Hz以上的干扰信号较强而0.05Hz以下的干扰信号相对较弱,所以在滤波电路中采取先低通滤波取出200Hz以下的信号,然后接高通的方式,从而滤除极化电压及高频干扰。在电路中A4及电阻、电容组成带通滤波器,同时使电路具有较高的输出阻抗,其中高通滤波器由C1、R8构成,低通滤波器由C2、R10构成,则下限频率为fL = 1/(2πC1R8) = 0.048Hz,上限频率为fH = 1/(2πC2R10 ) = 200.95Hz.然而最为严重的干扰是市电电源的50Hz(部分国家为60Hz) ,因此还须一个50Hz的带阻滤波器(又称陷波器)进一步抑制电源干扰。常用的切比雪夫滤波器具有从通带到阻带能迅速衰减的特点,因此采用四阶切比雪夫滤波器,通带选择在45~ 55Hz之间,其传递函数及对应差分方程为:

其对应的幅频和相频特性如图3所示。

由图3可见,带阻滤波的选频特性很好,当信号频率等于特征频率时,衰减几乎到零,且相频特性呈现±90o突变的形式。

图4是滤波前和滤波后的频谱,可以看出,信号在50Hz处被很好的抑制了,滤波的效果非常理想,完全可以达到临床实用的要求。滤波器对最终信号的质量尤为重要,由于滤波器的性能对元器件的误差相当灵敏,因此在这一级的设计中需要选用稳定而精密的阻容原件,可串联精密电位器以获得较好的效果。

4、电路调试

心电放大器制作成印刷电路板(PCB板)并进行整机测试。测试结果如下:

差模电压增益为1000,共模抑制比为80dB,差模输入阻抗大于107欧,通频带为0. 05~ 200Hz.测得的心电图信号如图5所示

可见心电信号清晰稳定,完全能够满足临床监护以及病理分析的要求。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭