当前位置:首页 > 显示光电 > 显示光电
[导读]引言  近年来,高分子分散型液晶显示器(polymerdispersed liquid crystal,PDLC) 的一些特殊性能得到了很大的应用。本文基于当前对PDLC 的理论研究成果,探讨和研究了PDLC 器件的显示原理,同时制作了基于玻璃基材

引言

  近年来,高分子分散型液晶显示器(polymerdispersed liquid crystal,PDLC) 的一些特殊性能得到了很大的应用。本文基于当前对PDLC 的理论研究成果,探讨和研究了PDLC 器件的显示原理,同时制作了基于玻璃基材的PDLC,并对其性能进行了讨论。
 

  1 理论基础研究

  高分子分散型显示器就是用高分子预聚合物和向列相液晶按照一定的比例混合在一起,由于两者的分子结构比较相似,所以很容易混合在一起,再通过涂布或灌注到液晶盒里,然后进行聚合反应,就完成了制作。聚合方式可分为热聚合相分离、光聚合相分离、溶剂型聚合反应等,本文采用光聚合相分离的办法制作。其原理就是当高分子预聚合物发生聚合相反应后,高分子聚合物将和液晶分子发生分离,液晶分子彼此靠拢形成液晶滴,它们分散在高分子中间,其结构和工作原理如图1 所示。

  

 

  在不加电场时,液晶分子在微滴中自由排列,所有微滴也是无序的排列。由于液晶分子是强的光学各向异性和介电各向异性材料,其有效的折射率不与基体折射率匹配,也就是说它们和高分子聚合物之间互相发生散射,这样就形成了雾态。当加上电场时,液晶分子将会呈现一致的平行排列,这样高分子的折射率与液晶的寻常光折射率一致时,高分子聚合物和液晶分子之间没有散射,液晶盒将呈现亮态。现在的应用就是基于雾态和亮态二者转换,以获取相应的显示内容。因为它不需要偏光片、定向层,所以制作工序相对普通的TN 和STN 等简单很多,但是它能有特殊的显示效果,所以在实际应用中还是有很大的发展空间的。

  采用Rayleigh- Gans 的散射理论,对双极排列液晶的微滴,高分子分散型液晶滴显示的散射截面由式(1)表示:

  

 

  其中,R 是球形液滴的半径,np 是高分子的折射系数。

  液晶微滴的定量讨论表明,阈值电压与液晶分子在微滴内的排列状态有关。对于从双极排列到平行排列的转变电压由式(2)表示:

  

 

  其中, l=a/b ,是液晶微滴长短之比,ρp 和ρLC 分别是高分子和液晶的电导率。

  所以从以上可以看出,PDLC 的驱动电压比较高,虽然可以通过降低盒厚来解决,但降低盒厚会造成对比度下降很多,这个在后文实验中有所对比。还有就是减小高分子和液晶的电导率之比ρp/ρLC,这也是一个方法。国外现在已研发出能够使用在手表上的PDLC,其电压可以满足手表的要求,显示效果也得到了很多消费者的认可。

  2 实验方案及其制作

  首先是进行空盒工序的制作,从制作工序上讲,光刻的工艺和材料同TN 产品没有差别,用同样的制作工艺即可。因不需要定向层,所以直接进行丝印边框和喷洒所需粒径的衬垫料,然后进行热压制盒。通过使用玻璃的基板,可以较容易地制作图案,还有就是可以获得想要的膜厚,而且膜厚的精度可以控制在0.5μm 以内,这样实验时受外界因素影响小,实验的结果也会较为准确。

  然后进行灌液晶的操作,因PDLC 液晶的粘度偏大,所以在制作封口时可以大一些和多一些,以利于灌液晶。

  最后是进行光聚合反应,在这个过程中,光的强度和光照时间都会影响到液晶微粒的尺寸及分布,而这最终要影响到PDLC 膜的电光性能。所以本文在进行光聚合反应时,光聚合反应的实验条件是一致的。具体条件是使用高压汞灯,波长为365nm,光强为8.5mW/cm2,时间为60s。

  本文选定了一款PDLC 液晶,液晶使用向列相类型,具体参数为△n=0.22,△ε=13.2,液晶的粘度在180cp,分别用8μm 和20μm 的工艺制作,然后进行on 和off 透过率的测试,也就是通过测试透过率的方法进行PDLC 的性能评估。

  3 结果与讨论

  通过以上的设计和工艺,我们制作了两个PDLC样品,并且进行了相关透过率的测试,如图2、3 所示。

  

 

  从图中可以看出,8μm 的产品只需要12V即可驱动,而20μm 的产品需要40V 才可以驱动,并且8μm 产品的开启透过率为72% ,20μm 产品的开启透过率为34%。所以在同样的制备条件下,随着膜厚的增加,透过率降低,也就是对比度在增加。从理论上分析,因PDLC 膜中聚合物网络的网眼分布均匀,其暗态的透过率降低,对比度明显增大。当然PDLC膜的驱动电压也随着膜厚的增加而升高,公式(2)也说明了这一点。

  4 结论

  从以上实验数据来看,随着膜厚的增大,对比度越高,但是所需驱动电压也越高。当然,在不增加膜厚的情况下要提高PDLC 的对比度,还是要遵从将液晶与预聚物混合时,应该选择那些在预聚合物中有一定的溶解度,但是溶解度又不能太大的液晶单体,使预聚合物与液晶的比例尽量接近最大的溶解度,以保证固化前混合液晶能够很好地溶解在聚合物中,聚合反应后又能最大限度地从聚合物中析出。为了获得整体性能优异的PDLC,对预聚合物和混合液晶的组分以及成膜固化条件进行细致的研究是非常必要的。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭