当前位置:首页 > 显示光电 > 显示光电
[导读]为了不增加硬件成本而提高显示数据的输出速度,在分析现有条形LED 显示屏单元板电路的基础上,提出了一种基于多端口串行Flash 存储器的LED 显示控制系统,该系统由STC12C5616 高速1T 单片机和带SPI接口的SST26VF016B

为了不增加硬件成本而提高显示数据的输出速度,在分析现有条形LED 显示屏单元板电路的基础上,提出了一种基于多端口串行Flash 存储器的LED 显示控制系统,该系统由STC12C5616 高速1T 单片机和带SPI接口的SST26VF016B 串行多端口Flash 存储器组成。 显示数据输出时,利用单片机的高速同步串行口( SPI) 高速时钟,将多端口串行Flash 存储器中的显示数据以"存储器直接存取( DMA) "的方式直接输出至超长条形LED显示屏。 最后,以4 096 × 64 点阵单色LED 显示屏为例进行了测试。 结果表明,显示屏刷新率达到62. 5 Hz,验证了该系统在实际应用中的有效性和可行性。

  在LED 显示屏应用中,超长条形LED 屏是非常广泛的一种形式,其特点是长度"特别长"而宽度窄。 超长LED 显示屏目前没有明确的定义,可以将其水平方向的点数定义为≥2 048 比较合适。

  以由1 /4 扫描P10 单元板( 点间距10 mm) 组成的超长条形LED 显示屏为例,当水平方向的点数为2 048 时,其水平方向物理尺寸为20. 48 m. LED 屏的宽度( 垂直方向) 点数一般为16、24 和32 点,最多不超过64 点,应用中以能够显示一行各类字体的汉字为主。 为保证刷新率,在对超长LED 显示屏的控制上,要求在规定时间内送出更多数据,普通的LED 显示屏控制卡很难实现控制要求。

  本文在分析现有各种条形LED 显示屏单元板电路的基础上,提出了一种基于多端口串行Flash存储器的LED 显示控制系统。 利用单片机的SPI接口产生可控时钟,将多端口串行Flash 存储器中的显示数据以"DMA"方式直接输出至超长条形LED 显示屏。

  1 常用单元板内部串行移位寄存器连接方式

  图1 为3 种常用单元板内部串行移位寄存器连接方式。 其中图1( a) 为单元板74HC595 与LED发光管点阵连接关系及简化表示电路。 LED 显示屏单元板内部使用的串行移位寄存器一般为74HC595、MBI5026 或MBI5026 兼容芯片,而MBI5026 可以看成是由两片74HC595 级联构成,为恒流源驱动模式,更适合LED 的驱动。

  图1( b) 、( c) 、( d) 分别为P10、P16、F3. 75 或F5. 0单元板的连接方式。

  图1 3 种常用单元板内部串行移位寄存器连接方式

  2 超长LED 显示屏面临的问题及解决方案

  目前,市场上大量的门头屏( 条形LED 显示屏) 是LED 显示屏应用最广的一种形式。 从技术上来说,门头屏的水平方向点数从256 点至数千点,而高度一般不超过64 点。 随着市场需求和显示精度的提高,数千点长度的超长LED 显示屏需求量在不断加大。 普通的LED 显示屏控制卡难于满足刷新率的要求,以在长度上像素点是4 096 的F3. 75 LED 显示屏为例,设刷新率为60 Hz,其SCK时钟周期至少为106 /60 /16 /4 096 = 0. 254 μs = 254 ns.

  解决超长LED 显示屏数据输出的方法有两种: 一是选择高性能嵌入式处理器和FPGA 芯片,该方法控制卡成本较高; 二是巧妙应用单片机上的特殊功能部件并优化组织数据算法,这种方法成本很低。 本文采用的就是第2 种方法,通过优化算法将数据预先写入多端口串行Flash 存储器SST26VF016B 中,利用STC12C5616 单片机的SPI部件产生高速可控SCK 时钟,将多端口串行Flash存储器中的显示数据以"DMA"方式直接输出至超长条形LED 显示屏中,满足超长LED 显示屏的显示要求。

  超长LED 显示屏高度一般不超过64 点,若控制1 /16 扫描单色LED 显示屏,SST26VF016B 存储器的4 位数据端口正好满足LED 显示屏数据口宽度的需要。 图2 为SST26VF016B 存储器的控制时序,CS 为SST26VF016B 存储器的片选端,所有对存储器的操作都要在CS 为低电平期间进行;SCK 为时钟线,当空闲模式时,SCK 信号可以处于低电平状态( MODE 0) ,也可以处在高电平状态( MODE 3) ; SIO( 3∶ 0) 为4 位数据端口,在数据传输时,先传字节的高4 位,再传字节的低4 位。 从存储器的控制时序可以看出,对存储器的控制按照命令字、24 位存储地址、虚拟字节、数据字节0 到数据字节N 的顺序发送。 存储器的命令字可以实现对存储器进行片擦除、扇区擦除、单字节读写、连续字节读写等功能,完全能够满足超长LED 显示屏对存储器的容量和控制方式的要求。

  图2 SST26VF016B 存储器的控制时序。

  STC12C5616 是STC 公司推出的高速1T 单片机,时钟频率可达30 MHz 以上,其内部集成一个高速串行通信接口部件( 即SPI 接口)。 当STC12C5616 的SPI 部件采用主模式工作时,其SPI时钟输出频率( fclk) 可以达到晶振频率( fosc) 的1 /4 倍,并且可以灵活配置它的时钟相位和时钟极性,既满足对SST26VF016B存储器控制的要求,又满足超长LED 显示屏对时钟的要求。

 3 超长LED 显示屏控制卡电路设计

  利用串行Flash 存储器SST26VF016B 的多位数据口存储器和STC12C5616 单片机的SPI 部件能产生高速SCK 时钟的特点,将显示数据从串行Flash存储器旁路输出至LED 显示屏,电路如图3 所示。

  图3 超长LED 显示屏控制卡电路图。

  当显示屏的动态刷新速率达到50 次/s 时,在1 /16 扫描的LED 显示屏上,一行显示时间要小于1 /50 /16 s,即1. 25 ms. 在控制卡设计上,当fosc =22 MHz时,串行Flash 时钟频率fclk = 1 /4 fosc =5. 5 MHz,故4 096 个CLK 时钟所需时间为4 096 × 1 /( 5. 5 × 106 ) s = 0. 744 ms,加上采用SQI协议发送存储器指令和地址的时间后也小于1. 25 ms,故在图3 中,单片机STC12C5616 的外部时钟选择22 MHz 时钟,就可以保证在SQI 协议方式下实现4 096 超长显示屏的显示。

  单片机STC12C5616 的外部时钟选择22. 118 4 MHz,便于串行口波特率的精确控制; 引脚P3. 0和P3. 1为UART 接口,通过通信接口芯片MAX232 芯片实现控制卡和PC 机之间的通信连接; 引脚P2. 0 ~ P2. 3为4 位数据线,该数据线一方面连接存储器SST26VF016B 的4 位数据口,另一方面通过74HC245 驱动后连接到LED 单元板输出接口的数据线上。 在控制卡上设计有2 个单色LED单元板输出接口,接口J1 使用数据线D0和D1,接口J2 使用数据线D2和D3; 引脚P1. 7为SPI 时钟输出,SPI 时钟输出线同时连接到串行Flash 存储器SST26VF016B 和LED 单元板的时钟输入; 引脚P1. 4为串行Flash 存储器SST26VF016B 的片选信号; 引脚P3. 5为LED 单元板的数据锁存信号; 引脚P3. 7为LED 单元板的使能信号输出; 引脚P1. 0 ~P1. 3为LED 单元板的行选择信号输出; J1 和J2 连接头用来连接显示屏在高度方向上的LED 单元板,以符合门头屏64 点高度要求。

  该电路的设计可以灵活地在单片机、串行存储器和LED 单元板相互之间实现3 种不同的数据访问模式,分别是:

  (1) 单片机和存储器之间的正常访问。

  由图3 可以看出,单片机STC12C5616 和串行Flash 存储器SST26VF016B 之间的连接是参照数据手册进行连接的,可以实现正常的数据存取,同时该数据也会进入LED 单元板上的移位寄存器缓冲区,但只要LED 单元板上的数据锁存RCK 没有得到有效信号,进入LED 单元板的数据是不显示出来的无效数据。

  (2) 单片机和LED 单元板之间数据通信。

  将单片机引脚P1. 4置高电平,即将串行Flash存储器的使能端无效,这时存储器的数据端口呈高阻状态,单片机和LED 单元板之间数据通信就不会受到存储器数据口的影响,可以将单片机的数据正常输出到LED 单元板上。

  (3) 存储器和LED 显示屏之间的数据传输。

  首先采用第( 1) 种模式,单片机先向串行存储器输出命令字、存储地址和虚拟字节,然后将单片机的数据口P2. 0 ~ P2. 3全部置高电平,通过SPI 时钟从串行存储器读取显示数据,同时以"DMA"方式进入LED 单元板,当读取完一行数据后,在LED单元板上的数据锁存端RCK 上产生有效信号,就可以显示该行数据。 当采用这种模式时,一定要将单片机STC12C5616 的引脚P2. 0 ~ P2. 3设置为"弱上拉"模式。

  4 超长LED 显示屏显示程序设计

  在1 /16 单色LED 显示屏硬件电路设计中,74HC595 采用直通方式连接。 根据直通方式特点,预先对单色显示数据进行优化组织,将组织后的显示数据预先存放在串行Flash 存储器SST26VF016B 中。 如图4 所示,单片机输出显示每行数据时按"输出数据→送移位脉冲→地址加1"的顺序重复进行,显示完一行后,RCK 锁存显示,通过ABCD 切换行选通线。

  图4 1 /16 扫描单色F3. 75 或F5. 0 单元板( 64 × 32 点) 连接方式。

 以LED 显示屏的水平方向点数为4 096 点为例,其显示一帧数据的程序代码如下:

  woid Display( unsigned long begin_Addr)

  {

  unsigned char Ln

  ,Bv = 1;

  unsigned int Data_Length,Lw = 4096;

  unsigned long Addr;

  Data_Length = Bv* Lw

  ) ;

  for ( Ln = 0; Ln < 16; Ln + + )

  {

  Addr = Begin_Addr + Ln* Data_Length;

  CS = 0;

  SendSQI_Byte( 0x0B) ; / /送读命令

  / /送3 个字节地址

  SendSQI_Byte( ( Addr 》 16) &0xff) ;

  SendSQI_Byte( ( Addr 》 8) &0xff) ;

  SendSQI_Byte( ( Addr&0xff) ;

  SendSQI_Byte( ( 0xff) ; / /送虚字节

  P2 = P2 |0x0f;

  SPCTL = 0xd0; / /允许SPI 接口

  SPDAT = 0xff; / /启动第1 次SPI 发送

  Data_Length = ( Data_Length 》 3) - 1;

  while( Data_Length! = 0)

  { / /SPI 时钟每次传输8 个脉冲

  while( ( SPSTAT&0x80) == 0) ;

  SPSTAT = 0x80; / /清接收标志

  SPDAT = 0xff; / /启动SPI 发送

  Data_Length -- ;

  }

  while( ( SPSTAT&0x80) == 0) ;

  SPSTAT = 0x80; / /清接收标志

  SPCTL = 0x90; / /禁止SPI 接口

  CS = 1; /* disable devicce * /

  EN = 0;

  RCK = 1; RCK = 0;

  PI = ( ( P1&0xf0) | Ln

  ) ;

  EN = 1;

  }

  }

  在设计程序时,仅在换行时关闭显示屏,避免它产生余辉,其余时间都点亮。 在该程序中,Bv为数据线在垂直方向使用595 的组数; Lw为LED 显示屏水平方向像素点数; Ln为当前LED 显示屏显示数据行号。 当显示数据时,采用存储器和LED 显示屏的数据输出模式,单片机先向串行存储器输出"读数据"命令字"0x0B",然后输出24 位地址和虚拟字节,再使单片机数据口输出高电平,就可以根据LED 显示屏的长度输出SCK 脉冲。 送完一行数据后,禁止SPI 接口,RCK 锁存信号有效,切换至下一行,按重复步骤继续输出显示数据。

  5 测试

  经过测试后,显示屏显示正常,没有抖动情况,使用逻辑分析仪测试了其刷新率,如图5( b) 所示,信号A 的电平宽度表示显示1 行所需要的时间,其宽度为1. 036 16 ms,显示1 帧的时间为16 ×1. 036 16 ms≈16 ms,所以LED 显示屏的刷新率为1 /16 ms = 62. 5 Hz. 而当LED 显示屏的刷新率大于50 次/s 时,就可以满足设计要求,故本设计能够满足正常显示要求。 通过测试SCK 信号,如图5( a)所示,可以看出SCK 信号每8 个脉冲1 组,每组之间的时间间隔仅为570 ns,该时间主要消耗在判断SPI 数据传输完成标志和循环控制上。

  图5 LED 屏信号测试

  6 结论

  本文提出了基于多端口串行Flash 存储器的LED 显示控制系统,利用单片机的SPI 接口产生可控时钟,将多端口串行Flash 存储器中的显示数据以"DMA"方式直接输出至超长条形LED 显示屏。

  其制造成本低廉,根据本文程序及逻辑分析仪得到的时序图可知,该方法可以控制4 096 × 64 点阵单色LED 显示屏,在超长显示屏市场上有很好的应用前景。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

电源系统设计包括设计参数之间的许多权衡,例如尺寸、成本、效率和负载瞬态性能。为了设计功率级,必须建立各种特性,例如瞬态容限、纹波电压和负载特性。

关键字: 降压转换器 电源设计 控制

引领供应链数字化转型新潮流 上海2024年5月16日 /美通社/ -- 5月14日,"第七届亚太智慧供应链与物流创新博览会"在上海顺利举办,作为中国和亚太区最大规模,最有影响力的顶流供应链物流盛会,...

关键字: 数字化 软件 供应链管理 控制

上海2024年5月13日 /美通社/ -- CONNECT 2 是更加用户友好的声卡,仅需轻点几下,它就能为人声和乐器的录制增添异彩。触控面板触感舒适、控制精准、一目了然。所有输入输出信号均可独立静音。自动设置功能通过内...

关键字: NEC 声卡 控制 软件

今天,小编将在这篇文章中为大家带来led显示屏的有关报道,通过阅读这篇文章,大家可以对它具备清晰的认识,主要内容如下。

关键字: LED 显示屏 LED显示屏

功率器件是一种专门用于控制、调节和放大电能的电子元件,主要用于处理大功率电信号或驱动高功率负载,如电机、变压器、照明设备等。

关键字: 功率器件 控制 放大电能

西班牙塞维利亚,2024年3月12日 — Teledyne Technologies旗下公司、全球成像解决方案创新者Teledyne e2v宣布扩展其Flash™ CMOS图像传感器系列,推出Flash 2K LSA,该...

关键字: 图像传感器 Flash 摄像机

机器人是一种集成了机械、电子、控制、传感、人工智能等多学科先进技术的自动化装备,能够模仿或替代人类进行各种任务的设备。

关键字: 人工智能 电子 控制

在这篇文章中,小编将为大家带来JTAG接口与Flash的相关报道。如果你对本文即将要讲解的内容存在一定兴趣,不妨继续往下阅读哦。

关键字: JTAG Flash

伺服电机是一种高精度、高性能的电机,广泛应用于各种自动化控制系统中。控制伺服电机是实现自动化控制的关键环节,不同的控制方式具有不同的特点和适用场景。本文将介绍几种常见的伺服电机控制方式及其特点,并分析在实际应用中应注意的...

关键字: 伺服电机 控制 自动化

近日,第11届EEVIA年度中国硬科技媒体论坛暨产业链研创趋势展望研讨会在深圳召开,兆易创新Flash事业部产品市场经理张静在会上发布了主题为“持续开拓,兆易新一代存储产品助力行业创新”的演讲。

关键字: 兆易创新 Flash 闪存
关闭
关闭